SDG 6 - Clean water and sanitation

SDG 6

Ensure access to water and sanitation for all

Clean, accessible water for all is an essential part of the world we want to live in. There is sufficient fresh water on the planet to achieve this. But due to bad economics or poor infrastructure, every year millions of people, most of them children, die from diseases associated with inadequate water supply, sanitation and hygiene.

Water scarcity, poor water quality and inadequate sanitation negatively impact food security, livelihood choices and educational opportunities for poor families across the world. Drought afflicts some of the world’s poorest countries, worsening hunger and malnutrition.

By 2050, at least one in four people is likely to live in a country affected by chronic or recurring shortages of fresh water.

Facts and Figures

  • 2.6 billion people have gained access to improved drinking water sources since 1990, but 663 million people are still without
  • At least 1.8 billion people globally use a source of drinking water that is fecally contaminated
  • Between 1990 and 2015, the proportion of the global population using an improved drinking water source has increased from 76 per cent to 91 per cent
  • But water scarcity affects more than 40 per cent of the global population and is projected to rise. Over 1.7 billion people are currently living in river basins where water use exceeds recharge
  • 2.4 billion people lack access to basic sanitation services, such as toilets or latrines
  • More than 80 per cent of wastewater resulting from human activities is discharged into rivers or sea without any pollution removal
  • Each day,nearly 1,000 children die due to preventable water and sanitation-related  diarrhoeal diseases
  • Hydropower is the most important and widely-used renewable source of energy and as of 2011, represented 16 per cent of total electricity production worldwide
  • Approximately 70 per cent of all water abstracted from rivers, lakes and aquifers is used for irrigation
  • Floods and other water-related disasters account for 70 per cent of all deaths related to natural disasters

Space-based technologies for SDG 6

Water conservation and management are among the most critical issues facing humankind.Space technology can help analyse global water cycles, map water courses, and monitor and mitigate the effects of floods and droughts. Since 2008, UNOOSA, together with the Prince Sultan bin Abdulaziz International Prize for Water, organizes conferences on the use of space technology for water management and this web portal is among the results of this cooperation.

Moreover, the International Water Management Institute (IWMI) is one of the Regional Support Offices of UN-SPIDER. Read more here.

 

 

SDG 6 Targets

Learn more about the SDGs

Sources

Related Content

Article

Register for the United Nations/Ghana/PSIPW - 5th International conference on the use of space technology for water resources management

The United Nations Office for Outer Space Affairs (UNOOSA) and the Government of Ghana are jointly organizing a Conference with the support of the Prince Sultan Bin Abdulaziz International Prize for Water (PSIPW) to promote the use of space technology in water management to the benefit of developing countries.

The Conference will be held in Accra, Ghana, from 10- 13 May 2022, hosted by the University of Energy and Natural Resources on behalf of the Government of Ghana.

PSIPW announces winners for its 10th Award (2022)

On 5 June 2022, the Prize Council, under the chairmanship of the president of King Saud University Dr. Badran Al-Omar, and under the direction of PSIPW President HRH Prince Khalid Bin Sultan Bin Abdulaziz, approved the winners for the 10th Award (2022) of the Prince Sultan Bin Abdulaziz International Prize for Water (PSIPW).

Interview with Claudia Ruz Vargas, Researcher at IGRAC

Claudia Ruz Vargas is a civil engineer, graduated from the University of Santiago, Chile, with an international master’s degree in Groundwater and Global change. Her master thesis focused on groundwater modelling for recharge and saline intrusion risk assessment under climate change scenarios, in Cape Verde. Claudia has six years of work experience as a project engineer and researcher. She is currently a researcher at the International Groundwater Resources Assessment Centre (IGRAC), where she is involved in projects of high impact on the groundwater sector. In this interview, we talked to her about her career path, and how she has contributed to an improved and more sustainable management of groundwater resources, at a regional and global levels.

United Nations/Ghana/PSIPW - 5th International conference on the use of space technology for water resources management

From 10 to 13 May 2022, the United Nations Officer for Outer Space Affairs organized the 5th International conference on the use of space technology for water resources management. The conference was hosted in a hybrid format in Accra, Ghana, by the University of Energy and Natural Resources, Sunyani on behalf of the Government of Ghana. The event was attended by several senior government representatives of the host country including Dr. Mahamudu Bawumia, Vice President of the Republic of Ghana, the Honorary Minister of Education Dr.

Interview with Margherita Bruscolini, Geospatial & Earth Scientist, Drone Pilot at RSS-Hydro

Margherita is an interdisciplinary Earth scientist and drone pilot with a background in geologic and environmental sciences. She has international experience working in fields such as Earth Observation (EO), remote sensing, drones & geospatial data analysis applied to the environmental and humanitarian sectors, sustainability and climate change. Margherita is passionate about natural and climate-related technologies that can be used to develop sustainable and long-lasting solutions. She is working for a more inclusive world (Women in Geospatial+), without any sort of geographical or social barriers. Keywords: Science communication, Climate Change, STEM, inclusivity, sustainability, nature, hydrosphere, hydrology, water risks, Earth Observation (EO), satellite data, flood modeling, vulnerability, resilience, lifelong learning  Region/Country mentioned: Temperate climates, Arid climates, Luxembourg, Niger  Relevant SDG targets: 1, 4, 6, 9, 11, 13, 17  

Monitoring hydrological changes from space in a sparse gauged basin

Africa is endowed with abundant freshwater resources. It has sufficient rainfall and relatively low levels of water withdrawals for three major uses: domestic, agricultural and industrial uses. Changes in Africa’s water resources has been noticed transpiring in changes in water flow and variability, falling groundwater levels, changes in rainfall levels and timing, strongly influenced under climate change. The continent has a huge potential for energy production through hydropower.

Interview with Dr. Ayan Santos Fleischmann, Lead, Research Group in Geospatial Analysis of the Amazonian Environment and Territory

Ayan Santos Fleischmann is a hydrologist with a particular interest in wetlands and large-scale basins, mainly in South America and Africa, and in the context of human impacts on water resources. His main study approaches involve remote sensing techniques and hydrologic-hydrodynamic modeling, as well as interdisciplinary collaborations with other disciplines such as ecology and social sciences. Currently, he is a researcher at the Mamirauá Institute for Sustainable Development (Tefé, Amazonas, Brazil), where he leads the Research Group in Geospatial Analysis of the Amazonian Environment and Territory. He also leads the Conexões Amazônicas initiative for science communication about the Amazon Basin. Ayan holds a PhD degree from UFRGS, with a collaborative period at Université Toulouse III – Paul Sabatier (France). His Ph. D. thesis focused on the hydrology of the South American wetlands. Ayan holds an Environmental Engineering degree from the Universidade Federal do Rio Grande do Sul (UFRGS), with a research stay at the University of East Anglia in the United Kingdom. In this interview, we talked to him about his career path, the work he has been developing in Brazil with wetlands and floods, and his work in the Amazon River basin.

Water management in local communities led by women

When we think about geospatial technology, many of us imagine satellites for Earth observation and navigation, drones, and complex sensors used to collect information from the terrestrial surface. We also believe that most of the people capable of developing applications using geospatial data should hold a science-related Master or Ph.D. degree. The previous statement could not be further from the truth. Advances in technology have made access to geospatial technology possible for everybody.  

Interview with Stephanie Tumampos, PhD Student at Chair of Remote Sensing Technology, Technical University Munich

How do your professional career and/or your personal experience relate to space technologies and water?

My interest in water is deeply rooted in my personal life. I grew up on an island in the Philippines where a lot of people depend on water as a source of livelihood. From fishing in the open sea to fish breeding, water has always been a source of income at home. Aside from this, the small community where I grew up struggled with access to running water.

Interview with Mr Stuart Crane, Programme Management Officer at UN Environment

Mr Stuart Crane, has been program coordinator at the United Nations Environment Program and its Center for Water and Environment since 2017. Mr Crane has experience in international intergovernmental organizations since 2009 and dedicated large parts of his career to working on environmental issues such as energy, climate change and water. His professional background is in Environmental Quality and resource management, and he received his post graduate degree in International Development. On behalf of UNEP, he coordinates a global SDG 6 fresh water program that supports 193 countries with progressing towards SDG. 6 targets on improving the water governance, ecosystem management and reducing freshwater pollution.

Aquaporins: Fighting the global water crisis using nature’s own filter

A new water-treatment technology used by astronauts aboard the International Space Station has the potential to provide clean water to millions of people worldwide. By using proteins called aquaporins, this system mimics the natural filtering abilities of human kidneys and plant roots to purify and recycle wastewater. With an increasing global water demand especially in remote locations where clean drinking water is not easily accessible, this technology has the potential to provide a more resource-efficient method of water purification not only in space, but here on Earth as well.

Interview with Rebecca Gustine, PhD Student at Washington State University, Intern at Jet Propulsion Laboratory

Rebecca Gustine is currently a PhD student at Washington State University in the Department of Civil and Environmental Engineering studying civil engineering with a focus on water resources. She is also an intern at NASA JPL where she is a member of the ECOSTRESS applied science mission team working with local agencies to inform resource management and conservation efforts. We talked to her about her interdisciplinary research experiences through her undergraduate and graduate school.

The advantages of applying space-based technology in monitoring and controlling water hyacinth in aquatic ecosystems

Water hyacinth is a well-known plant that has invaded many aquatic ecosystems around the globe. The fast growing nature of the weed makes it challenging to contain. The weeds’ presence in aquatic bodies results in decreased oxygen and nutrient levels, which threatens aquatic life as well as the productivity and functionality of the whole aquatic ecosystem. This not only causes ecological disturbances but evidently socio-economic challenges arise as well as the weed can be detrimental to health as well as economic activities in many riparian communities worldwide. The use of space-based technology together with modern technologies is of great significance in capturing the weed and identifying its spatial and temporal distribution even in hard to reach places. This helps scientists better understand the weed and how infestation occurs which enables better management and control of the weed.

Interview with Naledi Msiya

Describe your professional (and/or personal) experience relating to water (and space technologies). Please indicate whether an experience is related to water or to both, space and water).

I have always had an interest for science and the environment and before starting university I was introduced to hydrology which really caught my interest and led me to studying a BSc Degree in Hydrology and Geography.

The water cycle from space: the central role of satellite-informed models in corporate water management

Water in the atmosphere, in the soil, in rivers and oceans is in continuous exchange via the global water cycle. This is commonly thought to be the circular movement of water that evaporates from the Earth's surface, rises on warm updrafts into the atmosphere, and condenses into clouds. It is transported by the wind as water vapour, and eventually falls back to the Earth’s surface as rain or snow.

Space technologies for drought monitoring and management

The impacts of climate change are ever more apparent. The frequency and scale of devastation and destruction of weather hazards are on an increasing trend. According to the latest Intergovernmental Panel on Climate Change Report (IPCC, 2021) climate change is intensifying the water cycle. This will cause more intense droughts in many regions. Moreover, water-related extremes impact the quality of life disproportionately strong. Drought accounts for 25% of all losses from weather-related disasters in the United States of America (Hayes et al., 2012).

Committee on the Peaceful Uses of Outer Space: 2021

The Committee on the Peaceful Uses of Outer Space in its sixty-fourth session, which took place form 25 August-3 September 2021 in Vienna, adopted the below on its agenda item "Space and water": 
 

  1. The Committee considered the agenda item entitled “Space and water”, in accordance with General Assembly resolution 75/92.

Interview with Victor Pellet, CNES PostDoc, Paris Observatory

Describe experience relating to water and space technologies

I grew up in a country (France) where water is freely available. The drought in 2003 was considered a one-time event. I had no single lesson on climate change at school. Despite this background, I was raised aware of the links between social and environmental inequality on a global scale.

Interview with Benjamin Kitambo, PhD student at the Laboratory for Space Geophysics and Oceanography

Describe your professional (and/or personal) experience relating to water and space technologies.

My interest in water is a result of my background in Geology. I come from a region (Katanga Province, Congo DR) where mining is the main source of livelihood. So, I had my bachelor's degree in Geology intending to work in the mining sector after graduation. However, towards the end of the bachelor’s programme, I was exposed to the deployment of geophysical equipment for water prospecting in my department.

European Space Agency’s “Water Scarcity” Kick-Start

The challenge

Water is one of the most important substances on Earth and covers 70% of the planet. However, freshwater makes up a very small fraction with 97% being saline and ocean-based. While the amount of freshwater on the planet has remained fairly constant over time, the world’s population has exploded, meaning that freshwater is threatened by significant forces, like overdevelopment, polluted runoff, and global warming. 

Interview with Hannah Ritchie, PhD student in WASH at Cranfield University

Hannah has always had a love for the outdoors and especially for being by the sea. From her interest in both hydrogeology and development, developed during her undergraduate studies in geology and her travels respectively, she is now undertaking a PhD in WASH, researching water security in rural communities in Kenya. Hannah undertook a six-month internship with Space4Water at UNOOSA in 2021, where she developed her understanding of the importance and application of space-based technologies in the water sector. She believes that groundwater and sanitation are two areas where space technologies are currently under-exploited but in which they hold a lot of potential.

Spin-off technologies for water

Have you ever considered how technological innovations from the space industry can benefit us here on Earth? You might be surprised to hear that non-space applications from space programmes are extensive.

Call for local perspectives: Groundwater challenges

Local perspectives and case studies

The aim of the local perspectives and case studies feature is to learn about gaps in water resource management from affected individuals, communities, civil society, professionals, researchers or organisations in the field to identify needs or potential solutions that space technologies could contribute to.

Interview with Egline Tauya, Head of the Environment and Water Institute at SARDC

Egline Tauya has focussed her career on natural resource management, after growing up in a rural area and learning to value such resources from a young age. Her work has been based in Africa and has included the use space technologies to map flood risks and vulnerable areas around the Zambezi and Limpopo River basins. Egline develops Environmental Outlooks as part of her work, which are reports that provide an integrated assessment of the state and trends of key environmental resources, such as freshwater, forest, and wildlife. Egline strongly believes in the integration of indigenous knowledges into water resource management and the crucial, but currently limited use of remote sensing in groundwater monitoring.

Stakeholder consultation: Contribute to the Global Gravity-based Groundwater Product (G3P)

For the G3P project, the consortium aims at developing a product of groundwater storage variations with global coverage and monthly resolution from 2002 until present by a cross-cutting combination of GRACE and GRACE-FO satellite gravity data with water storage data that are based on the existing portfolio of the Copernicus services. To ensure that this product will be of use to potential users, various stakeholders have been requested to participate in a user requirements survey. The consortium invites policy makers, commercial users, academic users, scientific and data organisations or any other interested individual to fill out this survey until 31 July 2021 and thereby help to create the ideal global gravity-based groundwater product.

Interview with Malek Abdulfailat

Malek Abdulfailat has over 10 years of experience mapping and coordinating water-related projects in Palestine, Israel, and Jordon. He is currently leading a new consultation firm working on three projects: Green businesses and Water, EcoTourism and Water, and Solid waste management through women leaders. He has experience using several different space based technologies including spatial analysis and water elevation mapping. He’s realises the importance of space based technologies and believes that one factor needed to unlock their true potential is by increasing access to such tools and by better communicating their potential to policy makers.

Can space technologies help improve WASH provision in camps and informal settlements?

The Human Right to water and sanitation

What does your morning routine look like? For most readers I’d assume you use the toilet, wash your hands, and maybe take a shower.  However, do you ever stop to consider the water you use to shower, or the soap you use to wash your hands? Often, especially in developed countries, these things are taken for granted, rightly considering access to adequate water, sanitation, and hygiene (WASH) as basic Human Rights (Figure 1).

Report on the Status and outlook of the Space4Water Project

The status and outlook of the Space4Water Project was presented at the 58th session of the Scientific and Technical Subcommittee (STSC) 2021 of the United Nations Office for Outer Space Affairs. The report is critical for outlining the motivation behind, contribution, and success of the Space4Water Project, and the Space4Water Portal as its main pillar.

Space technologies in the detection, monitoring and management of groundwater

Global groundwater supplies

Groundwater accounts for 30% of Earth’s freshwater resources (Shiklomanov 1993) (Figure 1) and is estimated to globally provide 36% of potable water, 42% of irrigation water, and 24% of industrial water – indicating its significant value (Global Environment Facility 2021). Groundwater affords a host of benefits, from providing better protection against drought and microbiological contamination than surface waters, to being generally low cost and accessible to many users.

A Better World Volume 7: Space4Water Feature

The United Nations Office for Outer Space Affairs together with its donor, the Prince Sultan Abdulaziz International Prize for Water have jointly published an article called Cooperation in applying space technologies to water management, in the 7th edtion of A Better World.

Interview with Sarhan Zerouali

Sarhan Zerouali became fascinated with water at a young age through learning about water scarcity around the world and about traditional methods for locating groundwater. In a space applications course Sahran then learnt about space-based technologies. He is currently working on a research project on how remote sensing and other technologies can help alleviate global challenges arising from land degradation. As an aerospace engineer, Sahran has worked with various modern technologies in his work including nanosatellites, artificial intelligence, and feature extraction algorithms.

The progress and potential of Sustainable Development Goal 6 and how Space Technologies contribute

Transitioning from the Millennium Development Goals (MDGs) to the Sustainable Development Goals (SDGs)

The world of WASH (water, sanitation, and hygiene) has come a long way in 30 years. Between 1990 and 2015, 2.6 billion people gained access to improved drinking water, whilst 2.1 billion gained access to improved sanitation (Unicef and World Health Organisation 2015). That’s a lot of people. But is it enough? 

Interview with Valdilene Silva Siqueira

Valdilene Siqueira has a diverse background in chemistry and environmental engineering and is currently pursing a master’s degree in Sustainable Territorial Development. Her work and experience has always been closely tied to water management and sanitation. She believes that access to water and ensuring the sustainable management of water resources in a fast-paced changing world are two of the most important challenges for the coming years. Valdilene feels that achieving mutual understanding on how to manage this resource, especially in water-scarce regions, is a real challenge for decision-makers but considers that an intersectoral, integrated and participatory approach is capable of bringing stakeholders together to reconcile their different interests and build collective solutions. 

Space for Communities: Space-based evidence to support community rights to water

Satellite imagery can be used to identify and monitor environmental and social impacts, and help solve human problems around the world. Despite rapid advancements in space-based technologies, not enough people have access to satellite data and all the insights it offers. Satellite imagery provides an objective way of verifying or validating the testimony of communities who are being impacted by social or environmental harms.

Interview with Ruvimbo Samanga

Ruvimbo Samanga, despite her age, has vast experience in the law, space, and water sectors. She is presently involved in a regional study on the integration of GIS and statistical information in Zimbabwe, working towards the promulgation of GIS standards and legislation to support a National Spatial Data Infrastructure (NSDI). Ruvimbo is excited by the merging of sustainable development for water management with space technologies because it is scalable, environmentally friendly, and cost-effective over the long run. Ruvimbo feels strongly that space technologies have a role to play in policy and legal affairs, and also sees potential especially in the use of emerging technologies such as block chain, artificial intelligence (AI) and quantum computing.

UNOOSA and Prince Sultan Bin Abdulaziz International Prize for Water reinforce their cooperation to promote use of space applications for water sustainability

VIENNA, 21 January (United Nations Information Service) - The United Nations Office for Outer Space Affairs (UNOOSA) and the Prince Sultan Bin Abdulaziz International Prize for Water (PSIPW) have renewed their long-standing agreement to promote the use of space-based technology for better water resource management.  PSIPW is a leading scientific award that focuses on innovation to address water scarcity, offered every two years.

Interview with Assoc. Prof. Susanne Schmeier

Prof. Susanne Scheier’s interest in water diplomacy, conflict and cooperation came from a long passion for water and the environment due to a love of the outdoors and being close to rivers and mountains as a teenager. She now uses her passion in her work, identifying and responding to challenges around shared water resources. She uses space technologies in her work with the Water, Peace and Security (WSP) partnership to identify hotspots of potential water-related conflicts early on and to raise political awareness with policy-makers.

Mapping and Monitoring Irrigated Agriculture from Space

Irrigation illustrates a major dilemma of agriculture: On the one hand, a growing world population demands more food and biomass (for example for energy production). On the other hand, natural resources such as water are only available in limited quantities and excessive use often leads to the degradation of ecosystems, which in turn has adverse effects on agricultural production and local livelihoods.

Interview with Dr. Pietro Campana

Dr. Pietro Campana studied environmental engineering with a focus on fluid dynamics, hydrology, and water resource management, before undertaking a PhD on solar irrigation systems. He is working on the water-food-energy nexus and is currently evaluating the first agrivoltaic system (a photovoltaic system that allows the combination of both electricity production and crop production on the same land to increase the land use efficiency) in Sweden. He constantly strives to work on something that can make a difference to people’s lives and finds developing tools and services that can solve water issues very exciting. He believes that to address the nexus challenges, we need novel technologies and more research and development funding.

Interview with Basuti Gerty Bolo

Basuti Gerty Bolo dreamt of space science and of becoming an astronaut when she was only 8 years old. She then wanted to be a pilot, before studying space applications and space and atmospheric science.  Her curiosity for space science was sparked by an interest in knowing more about unexplained mysteries of things happening in space, such as the cause of some plane crashes. Basuti works exceptionally hard to disseminate space knowledge. She is an Endowed Chair for Educational Technologies at Africa University in Zimbabwe, a UNOOSA Space for Women Network mentor, and is starting a space for women and girls network called Space4Women_AfricaDreamers to spread space awareness and promote gender equality.

Interview with Lukas Graf

Lukas Graf used to take clean drinking water for granted. As he grew up, and conversations around climate change and environmental destruction became increasingly intense, he started to become more aware of the importance and scarcity of water resources. Around a similar time, he became increasingly enthusiastic about space, realising that space technologies could be used to explore many of the pressing topics that he was interested in. He has participated in research projects that used remote sensing methods to study the effects of global change on ecosystems and especially on water availability. Lukas is interested in a range of topics from virtual water and water quality to irrigation and agriculture. He believes that interdisciplinary approaches and mutual dialog with societies and stakeholders need to be deepened for sustained resource management.

PSIPW Announces Winners for its 9th Award (2020)

On 26 July 2020, the Prize Council Chairman Dr. Badran Al-Omar, under the direction of PSIPW President HRH Prince Khalid Bin Sultan, announced the winners for the 9th Award (2020) of the Prince Sultan Bin Abdulaziz International Prize for Water (PSIPW).

PSIPW is a leading, global scientific award focusing on cutting-edge innovation in water research. It gives recognition to scientists, researchers and inventors around the world for pioneering work that addresses the problem of water scarcity in creative and effective ways.

Interview with Prof. Hesham El-Askary

Prof. Hesham El-Askary works at Chapman University in the Earth Systems Science Data Solutions (ESsDs) lab. Here, he supervises students on the use of satellite earth observations for topics including agriculture, water resources, air quality and climate action, and makes use of Artificial Intelligence (AI) and Machine Learning (ML). Prof. El-Askary is researching natural and anthropogenic pollution’s influence on the environment and is particularly interested in the concept of “glocal” impact—how what’s happening globally in terms of climate affects us locally. He believes that one of the biggest challenges in implementing sustainable water management is the lack of data to monitor progress, and advocates for space technologies to mitigates this shortage.  

Interview with Simonetta di Pippo

Simonetta di Pippo, Director of UNOOSA, has experience in the space sector for around 40 years. She has been involved in some very instrumental missions, from those which helped to discover water on Mars, to landing on and exploring a comet, to those that helped sustain human life on the ISS. Her aspiration in life is to have a profession that allows her to work and learn at the same time, with her current career affording her this dream. Curiosity and diversity are both crucial in her opinion for innovation and it is her personal and professional goal to encourage more women to pursue STEM education and careers.

Water Quality Indicators – an Overview

Clean drinking water is a precious resource. It is the basis of our daily life and decides like no other substance about our health and well-being. It is therefore important to ensure that the water for everyday use meets the highest quality criteria. But what is meant by the term water quality and how can water quality be measured and compared? This question will be addressed and explained in more detail in the following sections.

Interview with Prof. Rita Colwell

Prof. Rita Colwell’s career has been dedicated to providing safe water to rural communities, with a focus on cholera, after studying marine microbiology. Through her work, she and her team developed a model that employs satellite sensing to monitor the environmental factors associated with cholera. Prof. Colwell is also Director of the National Science Foundation and is a proponent of an educated society and increasing the number of women and minorities in STEM. For her, the most exciting aspect of her current work is assisting countries such as Yemen in predicting the risk of cholera outbreaks, however she believes one challenge that remains is the poor understanding of how effective the use of satellite sensos are for predicting the risk of such water borne diseases.

Women, water and space: The first geospatial rally for women in rural aqueducts

Can you imagine a group of young women empowering other women using geospatial technology? From July 10 to 13 July 2019 in the First Geospatial Rally for Women in Rural Aqueducts took place, where 30 women from very different contexts met with the same goal, to build an empowering space, in the Nicoya Campus (north of Costa Rica) of the University of Costa Rica (UCR). This was done with the intention to learn from each other.

Interview with Prof. Emerita Kristine M. Larson

Prof. Larson’s career has been focussed on using the Global Positioning System, and more recently using GPS to measure hydrological parameters, such as water levels in lakes, rivers, and the ocean, soil water content, and the depth of snow. To innovate, she Emerita believes a willingness to be different is key. She feels strongly about bringing space technologies closer to people by communicating better the important role that space technologies play and by making measurements from satellites easier for people to access.

Hydro-diplomacy: The role of space-derived data in advancing water security

Water scarcity is one of the greatest threats faced by humanity of our time – in 2019, more than two billion people experience high water stress (UN-Water 2019) and approximately four billion people suffer from severe water scarcity for at least one month per year (Mekonnen and Hoekstra 2016). This worsening problem increases the risk of international conflict over water resources breaking out, given that there are over 270 transboundary river basins, and three-quarters of UN Member States share at least one river or lake basin with a neighbour (UN News 2017).

Space Technology: A Tool for Epidemiology

Epidemiological mapping has been used for centuries. To give an example, John Snow, the father of epidemiology, created a map to determine the cause of the 1845 cholera outbreak in London, United Kingdom. The mapping allowed him to discover contaminated water as the source of the outbreak.

Urban Water Scarcity: How data from NASA’s GRACE-FO Mission can be used for (near) real time water management

As population becomes larger the demand for water soars, including water needed for domestic, industrial and municipal uses (Mogelgaard 2011). One example of that, is India, where on 20 June 2019 the city of Chennai almost run out of water. Satellite images show the extent of the water shortage in the city (figure 1). While people are queuing up to get water from water trucks that transfer water to the city, the greatest struggle is taking place in the city’s municipal buildings and businesses. Hospitals are facing the threat of not having enough water to treat patients and to clean equipment, and businesses are forced to shut down and wait until the crisis is over.

The impact of space-based internet communications constellations on water

Imagine a world where your internet is delivered not through cables or cell towers but a vast swarm of orbiting satellites. That world is a very different place. Political borders are no longer communication boundaries. Your phone works just as well in the US as it does in Nigeria and Australia and Cambodia. You can communicate with people on the other side of the planet near the physical limits of information transmission, unconstrained by slow cable networks.

Global Precipitation Mission: Improved, accurate and timely global precipitation information

Continuous and reliable global precipitation information is crucial for myriad of weather, climate and hydrological applications. The importance of precipitation in the form of rain, hail, sleet, snow etc. is known to science and clear to a layman. However, it’s quite tricky to measure past precipitation trends or predicting accurate future forecasts. There are three main categories of precipitation data sets available: ground based, satellite-based and blended products of ground and space data (Climate Data Guide, 2014).

Leveraging space technologies to monitor plastic pollution in oceans

 

Several ongoing projects are trying to detect plastic pollution in oceans by using Space technology

The ocean is where life began. It is home to the majority of the Earth’s plants and animals. However, there is currently another habitant endangering all species living under and above water. Humans included. The habitant is called “Plastic”. Plastic’s largest market is packaging designed for immediate disposal (Sigogneau-Russell, 2003).

Wastewater recycling on the ISS and in Singapore

 

How would you feel about drinking your own urine? To most, it is a measure that would only be taken in the direst of circumstances. However, astronauts on the International Space Station (ISS) have been drinking recycled urine every day for the past decade. In 2008, the ISS installed the Water Recovery System, a wastewater recycling device which converts urine, sweat, and atmospheric moisture into drinking water. This device has allowed the ISS to be much more self-sufficient and devices like it could serve to more sustainably produce clean water on Earth.  

Use of space-based technology to search for alternate sources of water in Tharparkar

In Pakistan’s southern province, Sindh, lies the world’s only fertile desert in the world. The Tharparkar Desert stretches till the southeastern parts of Punjab, joining the Cholistan Desert. Tharparkar District is the largest of 29 districts in Sindh. According to Integrated Water Resource Management Practices to Alleviate Poverty – A Model of Desert Development in Tharparkar, Pakistan, the Thar is, people of Thar, have their livelihoods dependent on 'rainfall and livestock rearing, which is critical to household food security.'

Stakeholder

Community water and Sanitation Agency

The Organisation is a Government agency in charge of providing portable drinking water and water related sanitation services to rural communities. The agency is incharge of achieving WASH related SDGs by 2030 at the remote communities in Ghana.

Deepwaters.ai Stakeholder

Deepwaters.ai

DeepWaters AI uses satellite data and AI to find underground drinking water and pipe leaks. It has created a map of the Earth’s underground water, with up to 98% accuracy. It was awarded a European Space Agency AI Kickstart contract in 2018. DeepWaters AI is supported by Esri, Amazon and Nvidia startup programs. It is a UK based social impact startup, that donates 51% of profits to water philanthropy. DeepWaters AI combines neural networks with ESA Sentinel 1 & 2 satellite data.

Water, Peace and Security Partnership

WPS is a partnership of research and civil society organizations that work together towards identifying water-related risks of human insecurity, fragility and conflict, and towards developing analytical and dialogue tools for preventing and mitigating such conflicts. WPS is a collaboration between the Netherlands Ministry of Foreign Affairs and a consortium of six partners: IHE Delft (lead partner), World Resources Institute (WRI), Deltares, The Hague Centre for Strategic Studies (HCSS), Wetlands International and International Alert.

Project / Mission / Initiative / Community Portal

Healthy Rivers for All Initiative Project / Mission / Initiative / Community Portal

Healthy Rivers for All Initiative

This website includes tools and resources for developing basin report cards. It includes reports that incorporate satellite imagery to measure environmental indicators and change over time.

With the University of Maryland Center for Environmental Science (UMCES), we are developing, packaging, and sharing a process that helps stakeholders create science-based report cards in their own basins with the right buy-in on-the-ground and credibility globally, so they can better manage resources for the protection of fresh water they depend upon.

Water scenarios For Copernicus Exploitation Project / Mission / Initiative / Community Portal

Water scenarios For Copernicus Exploitation

The Water-ForCE project will co-create a Roadmap for the development of the next phase of Copernicus Inland Water Services with the space sector, research community, policy, industry and third sector. The Roadmap will be benchmarked against community requirements, recommending services that should be delivered centrally by Copernicus and innovation opportunities that are better suited for business and research development.

Space-Enabled Modeling of the Niger River to Enhance Regional Water Resources Management

River and floodplain landscapes are constantly undergoing change due to natural and manmade processes putting pressure on fluvial systems, such as reservoirs, intensive agriculture, high-impact repetitive droughts and floods and the overall effects of climate change. All these bring about considerable changes, some of which irreversibly degrade ecosystem services, local economies and impact lives, particularly in sensitive transitional zones such as the Sahel region in Africa and its Niger River Basin (NRB).

Water Accounting + Project / Mission / Initiative / Community Portal

Water Accounting +

Water problems around the world are increasing; however, information useful for decision makers within the water sector and related to the water sector seems to be decreasing. Solving water problems requires information from many disciplines, and the physical accounts (describing sources and uses of water) are the most important foundation. The information has to be coherent and harmonized in order to provide an integrated picture useful for the assessment of the problems.

Africa-EU Innovation Alliance for Water and Climate Project / Mission / Initiative / Community Portal

Africa-EU Innovation Alliance for Water and Climate

The AfriAlliance project aims to better prepare Africa for future climate change challenges by having African and European stakeholders work together in the areas of water innovation, research, policy, and capacity development. Rather than creating new networks, the 16 EU and African partners in this project are consolidating existing ones, consisting of scientists, decision makers, practitioners, citizens, and other key stakeholders, into an effective, problem-focused knowledge sharing mechanism.

e-shape Project / Mission / Initiative / Community Portal

e-shape

e-shape is a unique initiative that brings together decades of public investment in Earth Observation and in cloud capabilities into services for the decision-makers, the citizens, the industry and the researchers. It allows Europe to position itself as global force in Earth observation through leveraging Copernicus, making use of existing European capacities and improving user uptake of the data from GEO assets.  EuroGEO, as Europe's contribution to the Global Earth Observation System of Systems (GEOSS), aims at bringing together Earth Observation resources in Europe.

In-Service ICT Training for Environmental Professionals Project / Mission / Initiative / Community Portal

In-Service ICT Training for Environmental Professionals

Decision-makers are faced with the constant challenge of maintaining access to and understanding new technologies and data, as information and communication technologies (ICTs) are constantly evolving and as more and more data is becoming available. Despite continually improving technologies, informed decision-making is being hindered by inadequate attention to enabling conditions, e.g. a lack of in-service education and professional training for decision-makers.

Event

The Prince Sultan Bin Abdulaziz International Prize for Water (PSIPW) 9th Awards Ceremony

PSIPW 9th Award (2020)

The Prince Sultan Bin Abdulaziz International Prize for Water (PSIPW) is an international award focusing on water-related scientific innovation and judged by leading scientists from around the world. Five prizes are bestowed every two years.

This event is being held virtually in conjunction with the United Nations General Assembly High-Level Meeting on the “Implementation of the Water-Related Goals and Targets of the 2030 Agenda.”

 

W12 Congress Event

Capacity Building and Training Material

Digital Earth Africa: DEA101 - Introduction to the Digital Earth Africa Sandbox

Digital Earth Africa learning platform

This learning platform helps users understand the significance of Earth observations, explore Digital Earth Africa datasets through an interactive map, and get started on the basics of python coding for spatial analysis.

Digital Earth Africa makes Earth observation (EO) data readily available, delivering decision-ready products to the African continent. Data generated by Digital Earth Africa will provide valuable insights for better decision-making across many areas, including resource management, food security and urbanisation.

Stakeholder Input on the Evolution of Copernicus Water Services Capacity Building and Training Material

In situ calibration and validation of satellite products of water quality and hydrology

Water-ForCE is organising a community virtual workshop of experts in calibration and validation of Remote Sensing Products. This workshop is invitation-only and requires registration. The precise timing of the session slots (2-3 hours each) will be communicated once we have filled all programme slots. Each session will nevertheless take place in the early afternoon (no earlier than 1pm Central European Time) to allow speakers across the globe to join.

Water-ForCE Webinar: SDG 6 clean water and sanitation Capacity Building and Training Material

Water-ForCE Webinar: SDG 6 clean water and sanitation

Water-ForCE Webinar: SDG 6 clean water and sanitation

While substantial progress has been made in increasing access to clean drinking water and sanitation, billions of people—mostly in rural areas—still lack these basic services.

During this webinar, we will be focusing on the targets of the Sustainable Development Goal no 6 (SDG6) on clean water and sanitation:

Speakers:

Land cover products for understanding water quality impacts Capacity Building and Training Material

Land cover products for understanding water quality impacts

Description

Communities need to understand how land cover affects water quality. This webinar provides information about NOAA’s coastal land cover data (also known as “C-CAP data”). Several tools make these data easier to use, including the Land Cover Atlas, an online viewer used to analyze land cover changes by county or watershed. Also covered: a step-by-step guidance document that helps users understand key water quality indicators.

Water: addressing the global crisis Capacity Building and Training Material

Water: addressing the global crisis

Overview 

The SDG Academy and the Stockholm International Water Institute have come together to offer this MOOC on some of the most important water issues. They focus on the key role water plays in the achievement of the Sustainable Development Goals, not least SDG 6, about sustainable water and sanitation for all. The course intends to explain the global water crisis through linkages between water, environment, and societal development, focusing on how to tackle issues such as growing water uncertainty and deteriorating water quality.

ARSET - Mapping and Monitoring Lakes and Reservoirs with Satellite Observations

Overview:

Natural lakes and man-made reservoirs are a part of Earth’s surface water. Freshwater lakes and reservoirs are used for drinking water, fishing, and recreational activities. Aside from the aesthetic and scenic value added by their presence, lakes support surrounding plant and aquatic ecosystems and wildlife. A variety of factors affect lakes and reservoirs, including climate variability and change, land use, and other watershed activities influencing surface runoff and groundwater.

ARSET - Integrating Remote Sensing into a Water Quality Monitoring Program

Overview:

These training webinars will focus on integrating NASA Earth observations into water quality monitoring decision making processes. This will include a brief overview of data products used for water quality monitoring, an overview of aquatic remote sensing-specific criteria, methods and best practices, obtaining NASA Earth observation data for water quality monitoring, and practical skill building in image processing for water quality monitoring of coastal and larger inland water bodies. 

ARSET - Processing Satellite Imagery for Monitoring Water Quality

Overview:

Polluted water influences all aspects of life, including people, animals, and the environment. NASA satellite observations provide near real-time information about water quality. This freely available data can help decision-makers in their work. Satellite data can have applications for managing drinking water, public health, and fisheries.

ARSET - Remote Sensing of Drought Capacity Building and Training Material

ARSET - Remote Sensing of Drought

Overview:

Prolonged drought can result in economic, environmental, and health-related impacts. In these training webinars, participants will learn how to monitor drought conditions and assess impacts on the ecosystem using precipitation, soil moisture, and vegetation data. The training will provide an overview of drought classification, as well as an introduction to web-based tools for drought monitoring and visualization.

Objective:

By the end of the training, participants will be able to:

ARSET - Groundwater Monitoring using Observations from NASA’s Gravity Recovery and Climate Experiment (GRACE) Missions

Overview:

Groundwater makes up roughly 30% of global freshwater. It also provides drinking water for the world’s population, and irrigation for close to 1/3rd of global agricultural land. Because of this level of reliance, monitoring groundwater is crucial for water resources and land management. The Gravity Recovery and Climate Experiment (GRACE) and GRACE-Follow On (GRACE-FO) missions from NASA and the German Research Centre for Geosciences (GFZ) provide large-scale terrestrial water storage estimation from mid-2000 to present.

ARSET - Using Earth Observations to Monitor Water Budgets for River Basin Management

Rivers are a major source of freshwater. They support aquatic and terrestrial ecosystems, provide transportation, and generate hydropower. Managing river basin watersheds is critical for developing policies for sustainable water allocation and development. Over the online course of four sessions, this introductory webinar series will address using satellite data and Earth system modelling data sources to estimate surface water budgets

ARSET - Introduction to Using the Variable Infiltration Capacity (VIC)Hydrologic Model with NASA Earth Observations

Overview:

Hydrologic modeling is useful for flood, drought, and water resources management. The Variable Infiltration Capacity (VIC) Model uses inputs to better understand hydrological processes in near real-time. Many of the inputs are available from NASA remote sensing and Earth system models, allowing the model to provide soil moisture, evapotranspiration, and runoff as outputs. Together with precipitation data, these outputs provide quantitative assessment of a regional water budget.

UN SPIDER Recommended Practice: Use of Digital Elevation Data for Storm Surge Coastal Flood Modelling

Overview:

Storm surges and tidal waves are global phenomena that considerably affect human populations in coastal and island regions. According to the Guide to Storm Surge Forecasting published by the World Meteorological Organization in 2011, storm surges can be defined as “oscillations of the water level in a coastal or inland body of water in the time range of a few minutes to a few days, resulting from forcing from atmospheric weather systems. According to this definition, the so-called wind waves, which have durations on the order of several seconds, are excluded”.

UN SPIDER Recommended Best Practice: Flood Hazard Assessment Capacity Building and Training Material

UN SPIDER Recommended Best Practice: Flood Hazard Assessment

Overview:

Flood hazard assessments are critical to identifying areas at risk and taking relevant preparation and mitigation measures to address the hazard. Using the HEC-RAS 2D model for preparing flood hazard maps, this Recommended Practice explains how to identify flood-prone areas and exposed infrastructure. Through its focus on the prevention and mitigation stages of the disaster management cycle, it complements the Recommended Practice on Flood Mapping and Damage Assessment with Sentinel-2, also developed by SUPARCO.

UN SPIDER Recommended Best Practice: Exposure Mapping Capacity Building and Training Material

UN SPIDER Recommended Best Practice: Exposure Mapping

Overview:

Mapping the extent of a natural hazard (e.g., assessing areas with a high risk) or disaster is a first step in disaster risk management and emergency response. Subsequently, exposure mapping enables the estimation of the impact of hazards or disasters, for example, regarding the number of affected inhabitants or infrastructure. The following practice shows the use of Quantum GIS to analyze a disaster extent map in combination with auxiliary data such as population or land cover data.

UN-SPIDER Best Practice: Disaster Preparedness Using Free Software Extensions

Overview:

Remote sensing technologies can support all stages of the disaster management cycle. In the prevention and preparedness phases, they often find their application in risk assessments, scenario modelling and early warning. This UN-SPIDER Recommended Practice explains how remote sensing data about recurring floods, information about infrastructure and socio-economic data can be integrated using free and open source software to support prevention and preparedness efforts.

Programming for Geospatial Hydrological Applications Capacity Building and Training Material

Programming for Geospatial Hydrological Applications

Overview:

In this self-paced online course, the participants will be introduced to the Programming for Geospatial Hydrological Applications. Participants will learn an essential skill for researchers dealing with (spatial) data. With scripting participants will be able to better control analysis using command line tools. They can also automate their procedures by writing batch scripts. Furthermore, participants can process their data and make models using Python and its useful libraries

QGIS Advanced Tutorials Capacity Building and Training Material