Groundwater

"Water that fills voids, cracks, or other spaces between particles of clay, silt, sand, gravel or rock within a saturated zone or formation (aquifer) below the soil surface." (Virginia Polytechnic Institute and State University, n.y.)

Sources

Virginia Polytechnic Institute and State University. "A Glossary  of Water-Related Terms", by Brian Benham. Publication 442-759

Related Content

Article

Interview with Dr Khalid Mahmood, Assistant Professor at the University of the Punjab

Could you describe your professional career and/or personal experiences related to space technology and water? Where does your interest in those sectors come from?

I started my research career in 2013, with research interests revolving around various environmental concerns that were deeply rooted in water related issues of Pakistan. Having an educational background in Space Science, it was quite intuitive to possess understanding of the very high potential of applicability of Geospatial technologies in the water sector.

Interview with Prof. Hesham El-Askary

Prof. Hesham El-Askary works at Chapman University in the Earth Systems Science Data Solutions (ESsDs) lab. Here, he supervises students on the use of satellite earth observations for topics including agriculture, water resources, air quality and climate action, and makes use of Artificial Intelligence (AI) and Machine Learning (ML). Prof. El-Askary is researching natural and anthropogenic pollution’s influence on the environment and is particularly interested in the concept of “glocal” impact—how what’s happening globally in terms of climate affects us locally. He believes that one of the biggest challenges in implementing sustainable water management is the lack of data to monitor progress, and advocates for space technologies to mitigates this shortage.  

United Nations/Ghana/PSIPW - 5th International conference on the use of space technology for water resources management

From 10 to 13 May 2022, the United Nations Officer for Outer Space Affairs organized the 5th International conference on the use of space technology for water resources management. The conference was hosted in a hybrid format in Accra, Ghana, by the University of Energy and Natural Resources, Sunyani on behalf of the Government of Ghana. The event was attended by several senior government representatives of the host country including Dr. Mahamudu Bawumia, Vice President of the Republic of Ghana, the Honorary Minister of Education Dr.

Est ce que les Technologies Spatiales Peuvent Améliorer les Provisions WASH dans les Camps et Quartiers Informels

Le droit humain à l'eau et à l'assainissement 

À quoi ressemble votre routine matinale ? Pour la plupart des lecteurs, je suppose que vous utilisez les toilettes, vous vous lavez les mains et peut-être que vous prenez une douche. Cependant, vous arrive-t-il de vous arrêter pour réfléchir à l'eau que vous utilisez sous la douche ou au savon que vous utilisez pour vous laver les mains ?

Space technologies in the detection, monitoring and management of groundwater

Global groundwater supplies

Groundwater accounts for 30% of Earth’s freshwater resources (Shiklomanov 1993) (Figure 1) and is estimated to globally provide 36% of potable water, 42% of irrigation water, and 24% of industrial water – indicating its significant value (Global Environment Facility 2021). Groundwater affords a host of benefits, from providing better protection against drought and microbiological contamination than surface waters, to being generally low cost and accessible to many users.

Global Precipitation Mission: Improved, accurate and timely global precipitation information

Continuous and reliable global precipitation information is crucial for myriad of weather, climate and hydrological applications. The importance of precipitation in the form of rain, hail, sleet, snow etc. is known to science and clear to a layman. However, it’s quite tricky to measure past precipitation trends or predicting accurate future forecasts. There are three main categories of precipitation data sets available: ground based, satellite-based and blended products of ground and space data (Climate Data Guide, 2014).

How has space revolutionised subsidence?

Introduction

Land subsidence is a global phenomenon and is defined as:

“a gradual settling or sudden sinking of the Earth's surface due to removal or displacement of subsurface earth materials”  - National Oceanic and Atmospheric Administration (2021)

From Jakarta to Nusantara: Land subsidence and other pressing water challenges in a sinking mega city

Jakarta, “the sinking city”, is the current capital city of Indonesia. Located on the Java Sea, this coastal city is home to nearly 30 million people within the greater-Jakarta area. Jakarta has grappled with water management issues for decades, leading to several current day water-related crises. Access to a reliable, potable water supply is extremely limited as there is a significant disparity between those with piped water access and those without. Citizens without piped water access have consequently relied heavily on groundwater and have dug thousands of unregulated wells as a result. This has led to a second water crisis – the chronic overextraction of Jakarta’s underground aquifers. Land subsidence is of the utmost concern as this sinking city is placed at high flood risk from the surrounding ocean. Approximately 40% of Jakarta now lies below sea level as a result and predictive models suggest that the entire city will be underwater by 2050 (Gilmartin, 2019). Compounding these problems, the climate crisis has led to significant sea level rise as glaciers and ice caps continue to melt (Intergovernmental Panel on Climate Change, 2019; Lindsey, 2022). As the city of Jakarta continues to sink and sea levels rise, millions of citizens within Jakarta are at extremely high risk of flooding, particularly during monsoon season. Thousands of residents have already been forced to abandon their homes in search of improved conditions and higher ground (Garschagen et al., 2018).

Comment l'espace a révolutionné les affaissements?

 Traduit de l'anglais par Mussa Kachunga Stanis

Introduction


L’affaissement de terrain est un phénomène mondial et se définit comme :

    "Un tassement progressif ou un affaissement soudain de la surface de la Terre dû à l'enlèvement ou au déplacement de matériaux terrestres souterrains" - National Oceanic and Atmospheric Administration (2021)

Can space technologies help improve WASH provision in camps and informal settlements?

The Human Right to water and sanitation

What does your morning routine look like? For most readers I’d assume you use the toilet, wash your hands, and maybe take a shower.  However, do you ever stop to consider the water you use to shower, or the soap you use to wash your hands? Often, especially in developed countries, these things are taken for granted, rightly considering access to adequate water, sanitation, and hygiene (WASH) as basic Human Rights (Figure 1).

Interview with Prof. Hesham El-Askary

Prof. Hesham El-Askary works at Chapman University in the Earth Systems Science Data Solutions (ESsDs) lab. Here, he supervises students on the use of satellite earth observations for topics including agriculture, water resources, air quality and climate action, and makes use of Artificial Intelligence (AI) and Machine Learning (ML). Prof. El-Askary is researching natural and anthropogenic pollution’s influence on the environment and is particularly interested in the concept of “glocal” impact—how what’s happening globally in terms of climate affects us locally. He believes that one of the biggest challenges in implementing sustainable water management is the lack of data to monitor progress, and advocates for space technologies to mitigates this shortage.  

Interview with Hafsa, Aeman, National Researcher, International Water Management Institute (IWM), CGIAR

In the interview, Hafsa Aeman discusses her passion for integrating water resource management with space technologies. She uses remote sensing and AI to tackle challenges like seawater intrusion and coastal erosion, focusing on vulnerable coastal ecosystems. By leveraging satellite data, her work provides critical insights for sustainable water management, crucial for communities impacted by climate change. Ms Aeman highlights the significant role of space technology in water management, especially through remote sensing, which helps monitor precipitation, soil moisture, and groundwater levels. Her proudest achievement is a publication on seawater intrusion, recognized for its innovative use of AI and remote sensing, contributing to Pakistan’s Living Indus initiative. At the International Water Management Institute (IWMI), Hafsa’s research integrates AI and remote sensing to optimize water and irrigation management systems. She emphasizes the importance of addressing seawater intrusion, which poses threats to agriculture, ecosystems, and global food security. She also underscores the role of community engagement in sustainable water management through capacity-building workshops for farmers, promoting smarter irrigation practices. She advocates for leadership opportunities for young scientists and believes AI can revolutionize water management by enabling more accurate and efficient data analysis. Rain, symbolizing renewal and sustenance, is her favorite aggregate state of water.

Interview with Amin Shakya, PhD Candidate at the University of Twente

We present an interview with Amin Shakya, a PhD candidate at the ITC Faculty of Geo-information science and earth observation at the University of Twente. We delve into Amin’s first engagements with geospatial technologies, his current PhD research on river discharge estimation using earth observation, as well as his prior work on groundwater analysis using space technologies. Further, Amin is engaged with the youth community particularly with the Groundwater Youth Network. We discuss his take on the role of youth in climate change adaptation. Throughout this interview, we touch upon various water challenges across the globe, from disaster risk management in Nepal, to urban water challenges in Mexico, to his current PhD research focused in Europe and in Africa.

Interview with Hannah Ritchie, PhD student in WASH at Cranfield University

Hannah has always had a love for the outdoors and especially for being by the sea. From her interest in both hydrogeology and development, developed during her undergraduate studies in geology and her travels respectively, she is now undertaking a PhD in WASH, researching water security in rural communities in Kenya. Hannah undertook a six-month internship with Space4Water at UNOOSA in 2021, where she developed her understanding of the importance and application of space-based technologies in the water sector. She believes that groundwater and sanitation are two areas where space technologies are currently under-exploited but in which they hold a lot of potential.

Interview with Naledi Msiya

Describe your professional (and/or personal) experience relating to water (and space technologies). Please indicate whether an experience is related to water or to both, space and water).

I have always had an interest for science and the environment and before starting university I was introduced to hydrology which really caught my interest and led me to studying a BSc Degree in Hydrology and Geography.

Interview with Yolanda Lopez-Maldonado

Name of the community

Maya

Short description of community and hydrogeology of the area

Yucatan is located in the southeast portion of Mexico. The total area of Yucatan is 124, 409 km2 and the population (by 2018) was ca. 2.1 million inhabitants. The landscape of the area is defined by a highly permeable karstic soil, a notable absence of rivers or permanent freshwater resources in the surface, and a high number of natural wells or sinkholes (locally called cenotes, from the Maya word t´sonot).  

Interview with Claudia Ruz Vargas, Researcher at IGRAC

Claudia Ruz Vargas is a civil engineer, graduated from the University of Santiago, Chile, with an international master’s degree in Groundwater and Global change. Her master thesis focused on groundwater modelling for recharge and saline intrusion risk assessment under climate change scenarios, in Cape Verde. Claudia has six years of work experience as a project engineer and researcher. She is currently a researcher at the International Groundwater Resources Assessment Centre (IGRAC), where she is involved in projects of high impact on the groundwater sector. In this interview, we talked to her about her career path, and how she has contributed to an improved and more sustainable management of groundwater resources, at a regional and global levels.

Interview with Dr Khalid Mahmood, Assistant Professor at the University of the Punjab

Could you describe your professional career and/or personal experiences related to space technology and water? Where does your interest in those sectors come from?

I started my research career in 2013, with research interests revolving around various environmental concerns that were deeply rooted in water related issues of Pakistan. Having an educational background in Space Science, it was quite intuitive to possess understanding of the very high potential of applicability of Geospatial technologies in the water sector.

Interview with Joshua Ubah, Geospatial Environmental Engineer

Joshua is a Master’s student in Tropical Hydrogeology and Environmental Engineering at Technische Universität of Darmstadt. His interest is focused on hydrogeological processes, groundwater modelling, application of remote sensing and GIS in environmental studies, water management and climate change. He also works as a graduate Intern at AgriWatch BV, a company that applies geospatial solutions for precision Agriculture. As a graduate intern, he applies his interdisciplinary knowledge in developing smart-farming solutions using space-based technologies to farmers in the Twente region of the Netherlands. He deploys satellite imagery, field studies and machine learning algorithms to predict the effect of climate change on arable crops. He also utilizes precipitation data to predict rainfall events to aid farmers in determining planting and harvesting periods. Joshua earned a bachelor’s degree in Geological Sciences, his bachelor’s thesis research aimed at carrying out paleoenvironmental reconstruction using paleocurrent indicators of water flow and direction, and application of ArcGIS to produce maps. Currently, he is working on his master’s thesis with emphasis on the impact of the ancient climate on the paleoenvironment particularly on vegetation, where he tries to research plants response to long-term greenhouse periods and short-term warming events on various timescales throughout Earth's history. His research interests revolve around the application of space technologies in providing solutions and tackling climate change.

Call for abstracts - until 31 August - for the 5th SADC Groundwater conference

The SADC Groundwater Management Institute will host its 5th SADC Groundwater Conference on 16, 17 & 18 November 2022.

The conference is held annually, with the primary objective of providing a platform for the advancement of knowledge sharing on sustainable management of groundwater at national and transboundary levels across SADC Members States

This year the event will be physically held in Windhoek, Namibia with an online participation option.

Call for local perspectives: Groundwater challenges

Local perspectives and case studies

The aim of the local perspectives and case studies feature is to learn about gaps in water resource management from affected individuals, communities, civil society, professionals, researchers or organisations in the field to identify needs or potential solutions that space technologies could contribute to.

European Space Agency’s “Water Scarcity” Kick-Start

The challenge

Water is one of the most important substances on Earth and covers 70% of the planet. However, freshwater makes up a very small fraction with 97% being saline and ocean-based. While the amount of freshwater on the planet has remained fairly constant over time, the world’s population has exploded, meaning that freshwater is threatened by significant forces, like overdevelopment, polluted runoff, and global warming. 

Interview with Amin Shakya, PhD Candidate at the University of Twente

We present an interview with Amin Shakya, a PhD candidate at the ITC Faculty of Geo-information science and earth observation at the University of Twente. We delve into Amin’s first engagements with geospatial technologies, his current PhD research on river discharge estimation using earth observation, as well as his prior work on groundwater analysis using space technologies. Further, Amin is engaged with the youth community particularly with the Groundwater Youth Network. We discuss his take on the role of youth in climate change adaptation. Throughout this interview, we touch upon various water challenges across the globe, from disaster risk management in Nepal, to urban water challenges in Mexico, to his current PhD research focused in Europe and in Africa.

Interview with Hannah Ritchie, PhD student in WASH at Cranfield University

Hannah has always had a love for the outdoors and especially for being by the sea. From her interest in both hydrogeology and development, developed during her undergraduate studies in geology and her travels respectively, she is now undertaking a PhD in WASH, researching water security in rural communities in Kenya. Hannah undertook a six-month internship with Space4Water at UNOOSA in 2021, where she developed her understanding of the importance and application of space-based technologies in the water sector. She believes that groundwater and sanitation are two areas where space technologies are currently under-exploited but in which they hold a lot of potential.

Interview with Naledi Msiya

Describe your professional (and/or personal) experience relating to water (and space technologies). Please indicate whether an experience is related to water or to both, space and water).

I have always had an interest for science and the environment and before starting university I was introduced to hydrology which really caught my interest and led me to studying a BSc Degree in Hydrology and Geography.

Interview with Claudia Ruz Vargas, Researcher at IGRAC

Claudia Ruz Vargas is a civil engineer, graduated from the University of Santiago, Chile, with an international master’s degree in Groundwater and Global change. Her master thesis focused on groundwater modelling for recharge and saline intrusion risk assessment under climate change scenarios, in Cape Verde. Claudia has six years of work experience as a project engineer and researcher. She is currently a researcher at the International Groundwater Resources Assessment Centre (IGRAC), where she is involved in projects of high impact on the groundwater sector. In this interview, we talked to her about her career path, and how she has contributed to an improved and more sustainable management of groundwater resources, at a regional and global levels.

Interview with Joshua Ubah, Geospatial Environmental Engineer

Joshua is a Master’s student in Tropical Hydrogeology and Environmental Engineering at Technische Universität of Darmstadt. His interest is focused on hydrogeological processes, groundwater modelling, application of remote sensing and GIS in environmental studies, water management and climate change. He also works as a graduate Intern at AgriWatch BV, a company that applies geospatial solutions for precision Agriculture. As a graduate intern, he applies his interdisciplinary knowledge in developing smart-farming solutions using space-based technologies to farmers in the Twente region of the Netherlands. He deploys satellite imagery, field studies and machine learning algorithms to predict the effect of climate change on arable crops. He also utilizes precipitation data to predict rainfall events to aid farmers in determining planting and harvesting periods. Joshua earned a bachelor’s degree in Geological Sciences, his bachelor’s thesis research aimed at carrying out paleoenvironmental reconstruction using paleocurrent indicators of water flow and direction, and application of ArcGIS to produce maps. Currently, he is working on his master’s thesis with emphasis on the impact of the ancient climate on the paleoenvironment particularly on vegetation, where he tries to research plants response to long-term greenhouse periods and short-term warming events on various timescales throughout Earth's history. His research interests revolve around the application of space technologies in providing solutions and tackling climate change.

Interview with Hafsa, Aeman, National Researcher, International Water Management Institute (IWM), CGIAR

In the interview, Hafsa Aeman discusses her passion for integrating water resource management with space technologies. She uses remote sensing and AI to tackle challenges like seawater intrusion and coastal erosion, focusing on vulnerable coastal ecosystems. By leveraging satellite data, her work provides critical insights for sustainable water management, crucial for communities impacted by climate change. Ms Aeman highlights the significant role of space technology in water management, especially through remote sensing, which helps monitor precipitation, soil moisture, and groundwater levels. Her proudest achievement is a publication on seawater intrusion, recognized for its innovative use of AI and remote sensing, contributing to Pakistan’s Living Indus initiative. At the International Water Management Institute (IWMI), Hafsa’s research integrates AI and remote sensing to optimize water and irrigation management systems. She emphasizes the importance of addressing seawater intrusion, which poses threats to agriculture, ecosystems, and global food security. She also underscores the role of community engagement in sustainable water management through capacity-building workshops for farmers, promoting smarter irrigation practices. She advocates for leadership opportunities for young scientists and believes AI can revolutionize water management by enabling more accurate and efficient data analysis. Rain, symbolizing renewal and sustenance, is her favorite aggregate state of water.

PSIPW announces winners for its 10th Award (2022)

On 5 June 2022, the Prize Council, under the chairmanship of the president of King Saud University Dr. Badran Al-Omar, and under the direction of PSIPW President HRH Prince Khalid Bin Sultan Bin Abdulaziz, approved the winners for the 10th Award (2022) of the Prince Sultan Bin Abdulaziz International Prize for Water (PSIPW).

Call for local perspectives: Groundwater challenges

Local perspectives and case studies

The aim of the local perspectives and case studies feature is to learn about gaps in water resource management from affected individuals, communities, civil society, professionals, researchers or organisations in the field to identify needs or potential solutions that space technologies could contribute to.

Interview with Yolanda Lopez-Maldonado

Name of the community

Maya

Short description of community and hydrogeology of the area

Yucatan is located in the southeast portion of Mexico. The total area of Yucatan is 124, 409 km2 and the population (by 2018) was ca. 2.1 million inhabitants. The landscape of the area is defined by a highly permeable karstic soil, a notable absence of rivers or permanent freshwater resources in the surface, and a high number of natural wells or sinkholes (locally called cenotes, from the Maya word t´sonot).  

Capacity Building and Training Material

Introduction to Modflow and Model Use

This course provides basic knowledge about MODFLOW and Model Muse, which can be used to develop, run, and post-process models. MODFLOW in Model Muse combines many of the capabilities found in MODFLOW 6, MODFLOW-2005, MODFLOW-NWT, MODFLOW-USG, and MODFLOW-LGR, and provides a platform for adding packages.

ARSET - Water resource management using NASA Earth science data

Overview:

This online course covers precipitation (rainfall and snow fraction), soil moisture, evapotranspiration, runoff and streamflow, groundwater, and lake level heights. Participants are introduced to a number of NASA data products.

Objective:

Participants will be able to use NASA remote sensing observations and land-atmosphere models to: 

ARSET - Groundwater monitoring using observations from NASA’s Gravity Recovery and Climate Experiment (GRACE) missions

Overview

Groundwater makes up roughly 30% of global freshwater. It also provides drinking water for the world’s population and irrigation for close to one third of global agricultural land. Because of this level of reliance, monitoring groundwater is crucial for water resources and land management. The Gravity Recovery and Climate Experiment (GRACE) and GRACE-Follow On (GRACE-FO) missions from NASA and the German Research Centre for Geosciences (GFZ) provide large-scale terrestrial water storage estimation from mid-2000 to present.

Webinar: Groundwater for Water Security in Africa

Overview

This webinar is meant to contribute to the AMCOW Pan African Groundwater Programme (APAGroP) and its various capacity building actions. The webinar is intended to support African Member States and other relevant stakeholders to develop and implement evidence-based groundwater policy and practice in Africa for improved lives and livelihoods. 

ARSET - Groundwater monitoring using observations from NASA’s Gravity Recovery and Climate Experiment (GRACE) missions

Overview:

Groundwater makes up roughly 30% of global freshwater. It also provides drinking water for the world’s population, and irrigation for close to 1/3rd of global agricultural land. Because of this level of reliance, monitoring groundwater is crucial for water resources and land management. The Gravity Recovery and Climate Experiment (GRACE) and GRACE-Follow On (GRACE-FO) missions from NASA and the German Research Centre for Geosciences (GFZ) provide large-scale terrestrial water storage estimation from mid-2000 to present.

Water-ForCE Webinar: Water and Agriculture

Water-ForCE Webinar: Water and Agriculture

During this webinar, we will be discussing water quality (run-off from agriculture, pollution of surface water for irrigation) and quantity of water (drought, extreme rainfall, groundwater level, soil moisture) to tackle the water and agriculture domains for the Copernicus Roadmap.

Speakers:

Event

Local Perspectives Case Studies

Groundwater resource management using artificial intelligence and remote sensing technologies

Groundwater index maps for Bihar
Groundwater is a critical resource for drinking water, agriculture, and industry. With increasing anthropogenic activities and exponentially increasing population, groundwater in India is facing several challenges, related to quality as well as quantity, due to over-extraction, pollution, and climate change. Over-exploitation of groundwater may impact the availability and quality of groundwater which is not sustainable. Moreover, due to pollution in surface water, groundwater quality is also affected. In most of the cities of India, the quality of groundwater is below standard. Remote sensing and artificial intelligence can play a very vital role in monitoring the quantity as well as quality of groundwater. As, it is clear that presently no remote sensors can directly be used for groundwater observations, but by using surface features anomalies and gravity data obtained by various satellites, optimal groundwater management can be done using remote sensing. Space4water is one of the best communities addressing water related issues and work towards sustainable solutions. For the last three years, I am following this community, and I find that the community consists of scientists, NGO, policy makers etc. This combination has the potential to resolve issues related to any challenges related to social issues. I am looking for few global research partners who work for groundwater management using space technology. I am equally looking for data driven resource persons who can collaborate with me on real field conditions of various countries, related to groundwater management. What has been done so far is listed below: • Worked on GRACE satellite data and used it in field condition to study groundwater anomalies of few cities of India. • Developed spatio-temporal maps of Standardized Groundwater Index (SGI). • Worked on water quality of water bodies. • Used various satellite data to map water spread areas of various water bodies. • Worked on machine learning models to study in situ remediation of contaminated groundwater.

Decline in Groundwater levels and quality

Photo of a cenote in Merida Yucatan, CC license
Decline in groundwater quality is the challenge I have observed and experience in my country. Groundwater systems are particularly important in places where no rivers flows on the surface. In Yucatan, Mexico, for example, there are no rivers on the surface but we can find the Yucatán Peninsula Aquifer one of the biggest aquifers in the world. Today, the peninsula only has a population of 2 million, yet groundwater is being overexploited and polluted. In the peninsula, all socio-economic sectors rely directly or indirectly on groundwater. The main users – agriculture and industry – are causing high levels of pollution and severely overexploiting the cenotes. The quality of groundwater is also being affected by the construction of roads, buildings and other modifications that include pumping wells, infrastructure for tourism and the use of technology to extract and modify groundwater. In addition, warmer temperatures and increasingly unpredictable rainfall during the year are making it harder to store water. Another factor is that the large number of cenotes and lack of reliable hydrological data are making it difficult for users to monitor and control their usage of groundwater. Consequently, the population faces a greater risk to its groundwater reserves than is currently recognized. I would like use time–space evidence from the natural and social sciences for Earth information systems, but to find approaches to better integrate Indigenous knowledge and in situ observations from local communities that can be used to identify/estimate parameters that can support the management of aquifers.Y

Project / Mission / Initiative / Community Portal

Socio-groundwater toolbox

To date, hydrological issues are playing a key role in the implementation of the goals in which water has a crosscutting role linked to many other Sustainable Development Goals (SDG’s) set in the 2030 Agenda. According to SDG 6, there is a need to monitor eight different interrelated targets globally. At present, several global tools and initiatives for water monitoring exist. A prerequisite for their implementation is to have a thorough knowledge of the system and a consistent database, usually collected at a country and global scale worldwide.

Global Gravity-based Groundwater Product

Groundwater is an essential factor for ecosystems and humanity alike. It ensures ecosystem stability, energy and food security, and promotes human health. Groundwater is the largest component of global liquid freshwater resources in the water cycle, providing about 30% of the total freshwater. Groundwater accounts for 33% of the global water withdrawals by mankind, with more than two billion people depending on groundwater as primary water resource. However, despite its importance, groundwater is often not included in sustainable water management actions and plans.

Stakeholder

Prince Sultan Bin Abdulaziz International Prize for Water

The Prince Sultan Bin Abdulaziz International Prize for Water (PSIPW) is a scientific prize with a focus on innovation. Established in 2002 by HRH Crown Prince Sultan Bin Abdulaziz, it rewards the efforts made by scientists, inventors and research organizations around the world which contribute to the sustainable availability of potable water and the alleviation of the escalating global problem of water scarcity.

Department of Geodesy and Geoinformation of the TU Wien

Geodesy and Geoinformation take on key roles in our modern society as provider of information about geographical locations, environmental processes, physical fundamentals and are pivotal in enabling access to social relevant spatial data. Since its early days in the 19th century, the TU Wien hosts scientists and engineers undertaking geospatial data research. Today, a multitude of research fields in the evolving domain of geodesy and geoinformation is in the scope of our academic institution.

Remote Sensing, GIS and Climatic Research Lab, University of the Punjab

The emerging demand of GIS and Space Applications for Climate Change studies for the socio-economic development of Pakistan along with Government of Pakistan Vision 2025, Space Vision 2047 of National Space Agency of Pakistan, and achievement of UN Sustainable Development Goals (SDGs) impelled the Higher Education Commission of Pakistan (HEC) to establish Remote Sensing, GIS and Climatic Research Lab (RSGCRL) at University of the Punjab, Lahore, Pakistan.

International Groundwater Resources Assessment Centre

IGRAC is a research centre that provides groundwater data and information to enhance knowledge and wisdom, support decision making, and promote a world where groundwater is managed sustainably and equitably. Through monitoring and assessment, based on in-situ data and information, we focus our research on groundwater quantity, groundwater quality and transboundary aquifers. IGRAC contributes to capacity development, advocacy and awareness-raising, through knowledge exchange at multiple levels.

University of Energy and Natural Resources

The University of Energy and Natural Resources (UENR) was established by an Act of Parliament, Act 830, 2011 on December 31, 2011. The University is a public funded national institution which seeks to provide leadership and management of energy and natural resources and be a centre of excellence in these critical areas.

Rural Water Supply Network

The Rural Water Supply Network (RWSN) is the global network for rural water supply professionals, with 11,000 members in more than 150 countries. RWSN is a strategic global platform for knowledge sharing and collaboration in the water sector with a central focus on the achievement of universal access to safe, affordable water supplies.

Deepwaters.ai

DeepWaters AI uses satellite data and AI to find underground drinking water and pipe leaks. It has created a map of the Earth’s underground water, with up to 98% accuracy. It was awarded a European Space Agency AI Kickstart contract in 2018. DeepWaters AI is supported by Esri, Amazon and Nvidia startup programs. It is a UK based social impact startup, that donates 51% of profits to water philanthropy. DeepWaters AI combines neural networks with ESA Sentinel 1 & 2 satellite data.

Deltares

Deltares is an independent institute for applied research in the field of water, subsurface and infrastructure. Throughout the world, we work on smart solutions, innovations and applications for people, environment and society.

Person

Photo of Claudia Ruz Vargas

Claudia Ruz Vargas

Researcher International Groundwater Resources Assessment Centre

Claudia Ruz Vargas is a researcher at the International Groundwater Resources Assessment Centre (IGRAC), in Delft, the Netherlands. Through her work at IGRAC, she became a steward for the Essential Climate Variable (ECV) Groundwater at the Global Climate Observing System (GCOS), a programme co-sponsored by the World Meteorological Organization (WMO), the Intergovernmental Oceanographic Commission of UNESCO (IOC-UNESCO), UN Environment, and the International Science Council (ISC).

picture showing the person

Hafsa Aeman

Senior Research Officer - Geoinformatics, CGIAR International Water Management Institute

Hafsa Aeman is a Senior Research Officer at the International Water Management Institute (IWMI) in Pakistan. In this capacity, she is deeply involved in various projects, notably the Water Resource Accountability in Pakistan (WRAP) and NEXU Gains initiatives, both supported by the UK Foreign, Commonwealth, and Development Office (FCDO). These projects are geared towards augmenting capacity for water resource management at the provincial and district levels.

Space-based Solution

Addressed challenge(s)

The extraction of information on groundwater for a geographically small, water-scarce and groundwater reliant region

Collaborating actors (stakeholders, professionals, young professionals or Indigenous voices)
Suggested solution

Solution summary

To address the challenge of water security in Bahrain, this solution integrates space-based technologies and geospatial analysis to identify and monitor potential water resources, particularly shallow groundwater. The methodology involves the use of satellite-derived datasets and terrain modelling tools to analyse hydrological behaviour, soil moisture, and elevation-based drainage characteristics.

Three main data sources were incorporated into the solution:

  1. GRACE (Gravity Recovery and Climate Experiment) data is used to assess changes in terrestrial water storage at the regional scale by detecting gravity anomalies related to mass variations in groundwater. GRACE data is retrieved and visualised through platforms such as Google Earth Engine and ArcGIS Pro, enabling temporal monitoring of water resources.
     
  2. HAND (Height Above Nearest Drainage) modelling was employed to identify topographic wetness and assess the hydrological potential of the landscape. HAND normalises elevation relative to the nearest drainage, highlighting areas where water is more likely to accumulate or infiltrate. This method supports the identification of suitable zones for groundwater recharge, such as infiltration basins or artificial wetlands, especially in an arid environment like Bahrain. The HAND model was derived using the GLO-30 Copernicus DEM (2023_1 DGED version), processed through the TerraHidro platform, and included the generation of essential layers such as flow direction (D8), contributing area (D8CA), slope, and drainage networks with thresholds of 10, 100, and 300 pixels.
     
  3. Soil moisture analysis was conducted using two approaches:
  • SAR (Synthetic Aperture Radar) data from the Sentinel-1 constellation, which provides all-weather, day-and-night measurements of surface moisture conditions.
  • Optical-based soil moisture estimation, calculated from Landsat-8 imagery using vegetation and thermal indices (e.g., Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST)). This dual approach allows for consistent monitoring of surface moisture, which is crucial for assessing recharge potential and supporting irrigation planning.

Together, these tools provide a multi-faceted view of Bahrain's hydrological landscape, enabling decision-makers to strategically identify areas with groundwater potential and implement more sustainable water resource management practices.

Solution requirements

Gravity Recovery and Climate Experiment (GRACE)

GRACE is a joint mission by the National Aeronautics and Space Administration (NASA) and the German Aerospace Center (DLR) to measure Earth's gravity field anomalies from its launch in March 2002 to the end of its mission in October 2017. The GRACE Follow-On (GRACE-FO) is a continuation of the mission launched in May 2018. GRACE provides information on how mass is distributed and is varied over time through its detection of gravity anomalies. Because of this, a significant application of GRACE is groundwater anomalies detection. Hence, GRACE data has been explored as a solution for this challenge.

Two software platforms have been utilised to download and visualise GRACE data for Bahrain:

  1. Google Earth Engine (GEE): A cloud-based platform that facilitates remote sensing analysis with a large catalogue of satellite imagery and geospatial datasets. The platform is free for academic and research purposes.
     
  2. QGIS: A desktop application that allows the exploration, analysis and visualisation of geospatial data. This application is open source.

Height Above Nearest Drainage (HAND)

The Height Above Nearest Drainage (HAND) is a terrain model that normalises elevation data relative to the local drainage network, offering a hydrologically meaningful representation of the landscape. By calculating the vertical distance between each point on the terrain and the nearest drainage channel, HAND allows for the identification of topographic wetness zones and the classification of soil water environments. It has shown strong correlation with water table depth and has been effectively validated in various catchments, particularly in the Amazon region. The HAND model supports physically based hydrological modelling and has broad applicability in areas such as flood risk assessment, soil moisture mapping, and groundwater dynamics, using only remote sensing-derived topographic data as input.

Soil moisture using Synthetic Aperture Radar (SAR) imagery

SAR data from Sentinel-1 constellation was used to generate relative soil moisture values. Seninel-1 is a radar-based satellite which acquires data with 6 days repeat cycle, and is neither affected by clouds, weather nor time of the day. Being a dual-polarimetric platform, it acquires data in VV (Vertical-transmit and Vertical received) polarization and VH (Vertical-transmit and Horizontal received) polarization. The data was analysed in GEE.

Soil moisture using multispectral and thermal imagery (Optical)

The data utilised to detect soil moisture are satellite imagery from Landsat-8 downloaded through GEE. Landsat-8 provides multispectral and thermal satellite imagery with 16 days repeat cycle. The specific bands required to calculate soil moisture index are the red, near-infrared bands and thermal infrared bands.

Solution outline and steps

GRACE

Figure 1 illustrates the steps taken to extract the recent GRACE Monthly Mass Grids Version 04 - Global Mascon (CRI Filtered) Dataset from GEE.

 

Steps to download GRACE satellite data
Figure 1. Download steps for GRACE Data

 

HAND

The elevation data downloaded and processed for the region of interest were derived from the GLO-30 dataset. The Copernicus DEM, a Digital Surface Model (DSM), represents the Earth's surface, including features such as buildings, vegetation, and infrastructure. This DSM is based on the WorldDEM product, which has undergone extensive editing to ensure the flattening of water bodies, consistent river flow representation, and correction of terrain anomalies, including shorelines, coastlines, and features like airports. The WorldDEM itself was generated using radar satellite data from the TanDEM-X mission, a Public Private Partnership between the German Aerospace Centre (DLR) and Airbus Defence and Space. The GLO-30 data used in this work corresponds to the 2023_1 version of the Defence Gridded Elevation Data (DGED), provided via ESA’s https PRISM service and made accessible through OpenTopography.

The following products were processed using the TerraHidro software from the GLO-30 dataset: removepits.tif, d8.tif, d8ca.tif, slope.tif, drainage_10.tif, drainage_100.tif, and drainage_300.tif, as well as the HAND-derived products hand_10.tif, hand_100.tif, and hand_300.tif. Each product has a specific role in hydrological modeling:

  • removepits: This process modifies the original Digital Elevation Model (DEM) to eliminate depressions or pits that are not hydrologically realistic, ensuring that every cell has a defined downstream flow direction.
  • d8: The D8 (Deterministic 8) flow direction model calculates the steepest descent path from each pixel to one of its eight neighbors, indicating the primary direction of surface water flow.
  • d8ca: The D8 Contributing Area represents the number of upstream cells that contribute flow to each cell, allowing the identification of areas of potential accumulation and drainage.
  • slope: This product calculates the slope of the terrain in degrees, essential for understanding runoff velocity and erosion potential.
  • drainage_10, drainage_100, and drainage_300: These are drainage networks derived from the D8 contributing area, using threshold values of 10, 100, and 300 pixels, 0.9ha, 9ha and 27ha, respectively. They represent streams formed when the contributing area exceeds the specified number of pixels, with higher thresholds resulting in more generalised drainage networks.

From these products, the following HAND (Height Above Nearest Drainage) models were generated:

  • hand_10, hand_100, and hand_300: These datasets represent the vertical distance (in meters) from each pixel to the nearest drainage cell identified in the corresponding drainage network (with thresholds of 10, 100, and 300 pixels, respectively). These HAND maps are used to characterise terrain wetness, identify flood-prone areas, and support soil moisture and hydrological modeling.

All processing followed the methodology and toolset provided by the TerraHidro system, developed by INPE, and detailed at http://www.dpi.inpe.br/terrahidro/doku.php.

Soil moisture (SAR)

Several steps were executed to derive the mean soil moisture conditions over the study area between 2017 and 2024. A step-by-step guide is shown in Figure 2. The values of soil moisture estimated is relative to the maximum soil moisture recorded in the region such that the wettest will be the maximum and the driest will be the minimum.  These are used to normalise the final output into values between 0 and 1 where 0 is the driest and 1 is the wettest.

Steps for processing SAR soil moisture
Figure 2. Processing steps for SAR soil moisture

 

Soil moisture (Optical)

Similar to the soil moisture calculation with SAR, an average of the soil moisture from 2017 to 2024 has been derived. The interrelations between the derived vegetation through the Normalized Difference Vegetation Index (NDVI) as well as Land Surface Temperature (LST) have been the basis for generating the soil moisture map. Figure 3 demonstrates the steps followed to generate optical soil moisture.

Steps for processing optical soil moisture
Figure 3. Processing steps for optical soil moisture

 

Shallow groundwater locations/recharge areas

To estimate potential suitable locations for shallow groundwater or groundwater rechange, the results from the HAND, SAR and optical soil moisture have been aggregated to formulate a final classification map. To perform this, the following has been done:

  1. Classification of HAND, SAR and optical soil moisture results to ranges from 1-5, with 5 being the most suitable region based on the related values.
  2. Spatial modelling of these three classifications to formulate a final suitability value from 1-5 with 5 being the most suitable region overall. HAND has been given a weightage of 50 per cent while SAR and optical soil moisture have been given a weightage of 25 per cent each to represent 50 per cent overall for soil moisture.

Map generation

Different maps have been generated for each component of this solution (HAND, SAR soil moisture, optical soil moisture, shallow groundwater locations/recharge areas). The subsequent steps illustrate the steps needed to develop the maps for this solution:

  1. A basemap is added to the map for visualisation purposes. This is done through using the QGIS plugin called QuickMapServices. To install plugins, go to the Plugins tab and select Manage and Install Plugins.
Installing plugins in QGIS
Figure 4. Map generation - Step 1

 

  1. In the search box of the Plugins window, search for QuickMapServices and install the plugin.
QGIS plugin QuickMapServices
Figure 5. Map generation - Step 2

 

  1. The plugin logo should appear in the QGIS panel. Click on the logo for Search QMS Panel. This label would appear if you hovered over the logo.
Finding plugin in QGIS panel
Figure 6. Map generation - Step 3

 

  1. In the Search QMS Panel on the right, search for Google Satellite and add the basemap. It should appear in the list of layers.
Adding a basemap with the QGIS plugin
Figure 7. Map generation - Step 4

 

  1. Now we have a base layer that we can place our analysis on top of. Add the layer to the QGIS project if it is not already added. This can be done through drag and drop.
Adding a layer to QGIS project
Figure 8. Map generation - Step 5

 

  1. Right click on the layer and select Properties to adjust visualisation parameters.
Adjusting parameters in Properties of layer in QGIS
Figure 9. Map generation - Step 6

 

  1. In the Layer Properties window, click on Symbology and discover the most appropriate visualisation method for the data layer. This is an example for the set classifications for the HAND.
Adjusting symbology of a layer in QGIS
Figure 10. Map generation - Step 7

 

  1. Once the layer visualisation has been set, the map layout can be generated. Go to Project > New Print Layout and name the layout.
Creating a new print layout in QGIS
Figure 11. Map generation - Step 8

 

Naming the print layout in QGIS
Figure 12. Map generation - Step 8

 

  1. In the Layout window, items such as the layers map, legend, scales can be added. This is accessed through the Add Item tab.
Adding items to print layout in QGIS
Figure 13. Map generation - Step 9

 

  1. The items added to the map can then be moved and arranged by selecting the Edit tab then either Select/Move Content to move the locations of the specific content or Move Content to move the position/scale of the map.
Moving and scaling the map in the print layout in QGIS
Figure 14. Map generation - Step 10

 

  1. Each item’s properties such as size, colour and fonts can also be edited in the Item Properties panel in the right.
Adjusting the properties of an item in the print layout in QGIS
Figure 15. Map generation - Step 11

 

  1. The final generated layout is then exported in the desired format: png, pdf or svg. This is achieved through clicking on the Layout tab.
Exporting the print layout in QGIS
Figure 16. Map generation - Step 12

 

Results and maps

GRACE

The GRACE data has been downloaded and analysed through GEE. The main limitation of this dataset is its course resolution of 55.6 km2 as downloaded from the platform. This is due to the small geographical area of Bahrain at around 800 km2, causing water storage monitoring in specific locations to be a difficult task. Figure 17 demonstrates the span of GRACE data relative to the area of Bahrain.

GRACE data monthly grids for Bahrain
Figure 17.GRACE Mascon- 2002 to 2024 Bahrain

 

HAND

The HAND model shown in the figure 18 provides valuable insights for addressing water scarcity in Bahrain. The low-lying areas highlighted in blue indicate regions where water tends to accumulate or water table is relatively shallow, suggesting potential zones for managed aquifer recharge (MAR) or stormwater harvesting. These areas could be prioritised for infiltration basins, recharging wells, or constructed wetlands to enhance groundwater storage. Conversely, the higher elevation zones in grey are less likely to retain surface water but could be strategically used for runoff collection and diversion to recharge areas. Given Bahrain’s arid climate and dependence on non-conventional water sources, integrating HAND-based terrain analysis into water resource planning can support more resilient, localised, and efficient water management strategies, particularly in optimising land use for recharge, storage, and flood mitigation purposes.

Map with results for HAND at 100m threshold
Figure 18. HAND results map

 

Soil moisture (SAR)

Figure 19 shows the mean soil moisture values of different regions of Bahrain. The southern regions seem to be drier while most central regions are wet. The analysis excluded urban regions.

Map with SAR soil moisture results
Figure 19. SAR soil moisture results map

 

Soil moisture (Optical)

Figure 20 illustrates the soil moisture map with optical imagery for Bahrain. The results here highlight the northern west regions with high soil moisture values and the central, southern regions as dry with some specific location in the central and southern regions as wet.

Map with optical soil moisture results
Figure 20. Optical soil moisture results map

 

Shallow groundwater locations/recharge areas

Through Figure 5, the combinations of HAND, SAR and optical soil moisture has yielded to the potential locations for shallow groundwater locations/recharge areas. The areas highlighted in red represent the locations with highest potential.

Map showing potential shallow groundwater locations and recharge areas in Bahrain
Figure 21. Shallow groundwater locations/recharge areas results map

 

Solution impact

With the establishment of a methodology that identifies locations of shallow groundwater or recharge, significant information is being derived about the hydrological state of the country. This importance is placed due to the lack of remote sensing data that enables direct measurement of groundwater in the area. Hence the information extracted from this methodology can be initially integrated with sample in-situ data to calibrate the model; and then, be relied on solely for future measurements. Additionally, with the country’s rigorous focus on addressing groundwater scarcity, this type of information can greatly support decision-making when it comes to the formulation and execution of different projects and policies related to this matter.

Future work

To enhance the accuracy, applicability, and long-term impact of this solution in addressing water scarcity in Bahrain, several future developments are proposed:

  1. Integration of additional remote sensing products: Incorporate higher-resolution satellite data to improve spatial resolution in soil moisture and elevation analyses, enabling finer-scale hydrological modeling and more localised identification of recharge zones. Moreover, the inclusion of land cover and geological characteristics can enhance the spatial modelling conducted.
     
  2. Validation with in-situ data: Collaborate with local water authorities to collect and integrate ground-truth data such as groundwater levels, soil profiles, and well yields to validate and calibrate the HAND model and soil moisture outputs. This is also vital to assess the suitable weightage and classification for spatial modelling to be done to combine all three products generated.
     
  3. Development of a Decision Support System (DSS): Create an interactive platform or dashboard that integrates HAND, GRACE, and soil moisture maps to assist policymakers in identifying priority areas for groundwater recharge, stormwater harvesting, and drought preparedness.
     
  4. Temporal analysis and trend monitoring: Implement time-series analyses of GRACE and soil moisture data to detect trends, seasonal variations, and anomalies in water availability, supporting early warning systems and long-term planning.
     
  5. Hydrological modelling coupling: Link HAND-derived terrain data with physically based hydrological models (e.g., SWAT, DHSVM) to simulate runoff, infiltration, and recharge scenarios under different land use and climate conditions.
     
  6. Community engagement and capacity building: Conduct training workshops and knowledge-sharing activities with national institutions and stakeholders to build local capacity in geospatial water resource monitoring using open-source and space-based tools.

By pursuing these developments, the solution can evolve into a comprehensive and replicable model for sustainable groundwater resource management in water-scarce regions worldwide.

Relevant publications
Related space-based solutions
Sources

Nobre, A. D., Cuartas, L. A., Hodnett, M., Rennó, C. D., Rodrigues, G., Silveira, A., Waterloo, M., & Saleska, S. “Height Above the Nearest Drainage – a hydrologically relevant new terrain model.” Journal of Hydrology 404, no. 1–2 (2011): 13–29. https://doi.org/10.1016/j.jhydrol.2011.03.051.

Keywords (for the solution)
Climate Zone (addressed by the solution)
Habitat (addressed by the solution)
Region/Country (the solution was designed for, if any)
Relevant SDGs