6.5 By 2030, implement integrated water resources management at all levels, including through transboundary cooperation as appropriate

Graphic displaying the implementation of integrated water resource management

Related Content

Article

Interview with Dr Khalid Mahmood, Assistant Professor at the University of the Punjab

Could you describe your professional career and/or personal experiences related to space technology and water? Where does your interest in those sectors come from?

I started my research career in 2013, with research interests revolving around various environmental concerns that were deeply rooted in water related issues of Pakistan. Having an educational background in Space Science, it was quite intuitive to possess understanding of the very high potential of applicability of Geospatial technologies in the water sector.

Interview with Terefe Hanchiso Sodango, Assistant Professor at Wolkite University

Water scarcity and quality decline is a rapidly increasing challenges and becoming a top concern globally. To wisely manage water and achieve sustainable development, rapid and precise monitoring of water resources is crucial. Earth observation (EO) technologies play a key role in monitoring surface and underground water resources by providing rapid, continuous, high-quality, and low-cost EO data, products, and services. Currently, there are promising efforts in the use of EO technologies for water resource management but there are still huge gaps in the Africa region. The reason for the low utilization of EO technologies can be due to a lack of resources and funding including skilled and motivated human resources in the field and the lack of political commitment to foster EO products, data, and services. Therefore, the use of space technologies and their products to solve water-related problems needs collaborative efforts of all concerned stakeholders from global to local levels.

Monitoring River Delta Using Remote Sensing

Since ancient times, people have established communities in river deltas because it provides water, fertile land, and transportation access, making them an ideal place to live. This pattern has been carried forward to the present. With nearly 6 billion people living in river deltas, they are one of the most densely populated places on Earth (Kuenzer and Renaud, 2011). However, they are facing threats such as climate change, sea level rise, land use changes, and ecosystem degradation.

Water Quality Indicators – an Overview

Clean drinking water is a precious resource. It is the basis of our daily life and decides like no other substance about our health and well-being. It is therefore important to ensure that the water for everyday use meets the highest quality criteria. But what is meant by the term water quality and how can water quality be measured and compared? This question will be addressed and explained in more detail in the following sections.

L’importance des technologies spatiales pour quantifier la disponibilité en eau douce à l’échelle mondiale

De nos jours, la société fait face à de nombreuses pénuries de ressources. Alors que la rareté des minéraux de la Terre et l’épuisement des combustibles fossiles figurent parmi les problèmes les plus cités à cet égard, nous risquons de connaitre un sort plus imminent et destructeur : une crise mondiale d’eau douce. La sous-estimation de ce problème par notre société a intensifié notre relation précaire avec l'eau et a mis en péril les moyens de subsistance de nombreuses personnes.

The water cycle from space: the central role of satellite-informed models in corporate water management

Water in the atmosphere, in the soil, in rivers and oceans is in continuous exchange via the global water cycle. This is commonly thought to be the circular movement of water that evaporates from the Earth's surface, rises on warm updrafts into the atmosphere, and condenses into clouds. It is transported by the wind as water vapour, and eventually falls back to the Earth’s surface as rain or snow.

Indicateurs de la Qualité de l'Eau - Vue d'ensemble

Merci à Denis Gringas d'avoir traduit cet article volontairement.

L'eau potable est une ressource précieuse. Elle est à la base de notre vie quotidienne et décide comme aucune autre substance de notre santé et de notre bien-être. Il est donc important de s'assurer que l'eau d'usage quotidien réponde aux critères de qualité les plus élevés. Mais que signifie le terme qualité de l'eau et comment peut-on mesurer et comparer la qualité de l'eau? Cette question sera abordée et expliquée plus en détail dans les sections suivantes.

The advantages of applying space-based technology in monitoring and controlling water hyacinth in aquatic ecosystems

Water hyacinth is a well-known plant that has invaded many aquatic ecosystems around the globe. The fast growing nature of the weed makes it challenging to contain. The weeds’ presence in aquatic bodies results in decreased oxygen and nutrient levels, which threatens aquatic life as well as the productivity and functionality of the whole aquatic ecosystem. This not only causes ecological disturbances but evidently socio-economic challenges arise as well as the weed can be detrimental to health as well as economic activities in many riparian communities worldwide. The use of space-based technology together with modern technologies is of great significance in capturing the weed and identifying its spatial and temporal distribution even in hard to reach places. This helps scientists better understand the weed and how infestation occurs which enables better management and control of the weed.

Mapping and Monitoring Irrigated Agriculture from Space

Irrigation illustrates a major dilemma of agriculture: On the one hand, a growing world population demands more food and biomass (for example for energy production). On the other hand, natural resources such as water are only available in limited quantities and excessive use often leads to the degradation of ecosystems, which in turn has adverse effects on agricultural production and local livelihoods.

Les Avantages de l'Application des Technologies Spatiales dans la Surveillance et le Contrôle de la Jacinthe d'Eau dans les écosystèmes aquatiques

Merci à Mussa Kachunga Stanis d'avoir traduit cet article volontairement.

La résilience d'un socio-écosystème est généralement testée par sa capacité à persister et à maintenir sa fonctionnalité tout en subissant des changements dus à des perturbations. Mais que se passe-t-il lorsque les perturbations sont trop rapides, trop préjudiciables et trop fortes pour qu'un socio-écosystème puisse maintenir sa fonctionnalité ?

Global Precipitation Mission: Improved, accurate and timely global precipitation information

Continuous and reliable global precipitation information is crucial for myriad of weather, climate and hydrological applications. The importance of precipitation in the form of rain, hail, sleet, snow etc. is known to science and clear to a layman. However, it’s quite tricky to measure past precipitation trends or predicting accurate future forecasts. There are three main categories of precipitation data sets available: ground based, satellite-based and blended products of ground and space data (Climate Data Guide, 2014).

Hydro-diplomacy: The role of space-derived data in advancing water security

Water scarcity is one of the greatest threats faced by humanity of our time – in 2019, more than two billion people experience high water stress (UN-Water 2019) and approximately four billion people suffer from severe water scarcity for at least one month per year (Mekonnen and Hoekstra 2016). This worsening problem increases the risk of international conflict over water resources breaking out, given that there are over 270 transboundary river basins, and three-quarters of UN Member States share at least one river or lake basin with a neighbour (UN News 2017).

Interview with Amin Shakya, PhD Candidate at the University of Twente

We present an interview with Amin Shakya, a PhD candidate at the ITC Faculty of Geo-information science and earth observation at the University of Twente. We delve into Amin’s first engagements with geospatial technologies, his current PhD research on river discharge estimation using earth observation, as well as his prior work on groundwater analysis using space technologies. Further, Amin is engaged with the youth community particularly with the Groundwater Youth Network. We discuss his take on the role of youth in climate change adaptation. Throughout this interview, we touch upon various water challenges across the globe, from disaster risk management in Nepal, to urban water challenges in Mexico, to his current PhD research focused in Europe and in Africa.

Interview with Claudia Ruz Vargas, Researcher at IGRAC

Claudia Ruz Vargas is a civil engineer, graduated from the University of Santiago, Chile, with an international master’s degree in Groundwater and Global change. Her master thesis focused on groundwater modelling for recharge and saline intrusion risk assessment under climate change scenarios, in Cape Verde. Claudia has six years of work experience as a project engineer and researcher. She is currently a researcher at the International Groundwater Resources Assessment Centre (IGRAC), where she is involved in projects of high impact on the groundwater sector. In this interview, we talked to her about her career path, and how she has contributed to an improved and more sustainable management of groundwater resources, at a regional and global levels.

Interview with Benjamin Wullobayi Dekongmen

Could you describe how your professional and/or personal experience relate to water? Where does your interest in water resources management come from? What influenced your decision to focus your work on the use of space technology for water management? 

My upbringing on a farm set out the foundation for my interest in water resources, as I used to collect water for domestic and agricultural purposes from the streams.

Interview with Dr Khalid Mahmood, Assistant Professor at the University of the Punjab

Could you describe your professional career and/or personal experiences related to space technology and water? Where does your interest in those sectors come from?

I started my research career in 2013, with research interests revolving around various environmental concerns that were deeply rooted in water related issues of Pakistan. Having an educational background in Space Science, it was quite intuitive to possess understanding of the very high potential of applicability of Geospatial technologies in the water sector.

Interview with Terefe Hanchiso Sodango, Assistant Professor at Wolkite University

Water scarcity and quality decline is a rapidly increasing challenges and becoming a top concern globally. To wisely manage water and achieve sustainable development, rapid and precise monitoring of water resources is crucial. Earth observation (EO) technologies play a key role in monitoring surface and underground water resources by providing rapid, continuous, high-quality, and low-cost EO data, products, and services. Currently, there are promising efforts in the use of EO technologies for water resource management but there are still huge gaps in the Africa region. The reason for the low utilization of EO technologies can be due to a lack of resources and funding including skilled and motivated human resources in the field and the lack of political commitment to foster EO products, data, and services. Therefore, the use of space technologies and their products to solve water-related problems needs collaborative efforts of all concerned stakeholders from global to local levels.

Call for abstracts - until 31 August - for the 5th SADC Groundwater conference

The SADC Groundwater Management Institute will host its 5th SADC Groundwater Conference on 16, 17 & 18 November 2022.

The conference is held annually, with the primary objective of providing a platform for the advancement of knowledge sharing on sustainable management of groundwater at national and transboundary levels across SADC Members States

This year the event will be physically held in Windhoek, Namibia with an online participation option.

Interview with Amin Shakya, PhD Candidate at the University of Twente

We present an interview with Amin Shakya, a PhD candidate at the ITC Faculty of Geo-information science and earth observation at the University of Twente. We delve into Amin’s first engagements with geospatial technologies, his current PhD research on river discharge estimation using earth observation, as well as his prior work on groundwater analysis using space technologies. Further, Amin is engaged with the youth community particularly with the Groundwater Youth Network. We discuss his take on the role of youth in climate change adaptation. Throughout this interview, we touch upon various water challenges across the globe, from disaster risk management in Nepal, to urban water challenges in Mexico, to his current PhD research focused in Europe and in Africa.

Interview with Claudia Ruz Vargas, Researcher at IGRAC

Claudia Ruz Vargas is a civil engineer, graduated from the University of Santiago, Chile, with an international master’s degree in Groundwater and Global change. Her master thesis focused on groundwater modelling for recharge and saline intrusion risk assessment under climate change scenarios, in Cape Verde. Claudia has six years of work experience as a project engineer and researcher. She is currently a researcher at the International Groundwater Resources Assessment Centre (IGRAC), where she is involved in projects of high impact on the groundwater sector. In this interview, we talked to her about her career path, and how she has contributed to an improved and more sustainable management of groundwater resources, at a regional and global levels.

Interview with Benjamin Wullobayi Dekongmen

Could you describe how your professional and/or personal experience relate to water? Where does your interest in water resources management come from? What influenced your decision to focus your work on the use of space technology for water management? 

My upbringing on a farm set out the foundation for my interest in water resources, as I used to collect water for domestic and agricultural purposes from the streams.

Event

Project / Mission / Initiative / Community Portal

Socio-groundwater toolbox

To date, hydrological issues are playing a key role in the implementation of the goals in which water has a crosscutting role linked to many other Sustainable Development Goals (SDG’s) set in the 2030 Agenda. According to SDG 6, there is a need to monitor eight different interrelated targets globally. At present, several global tools and initiatives for water monitoring exist. A prerequisite for their implementation is to have a thorough knowledge of the system and a consistent database, usually collected at a country and global scale worldwide.