SDG 9 - Industry, innovation and infrastructure

SDG 9

Build resilient infrastructure, promote sustainable industrialization and foster innovation

Investments in infrastructure – transport, irrigation, energy and information and communication technology – are crucial to achieving sustainable development and empowering communities in many countries. It has long been recognized that growth in productivity and incomes, and improvements in health and education outcomes require investment in infrastructure

Manufacturing is an important driver of economic development and employment. At the current time, however, manufacturing value added per capita is only US$100 in the least developed countries compared to over US$4,500 in Europe and Northern America. Another important factor to consider is the emission of Carbon Dioxide during manufacturing processes. Emissions have decreased over the past decade in many countries but the pace of decline has not been even around the world.

Technological progress is the foundation of efforts to achieve environmental objectives, such as increased resource and energy-efficiency. Without technology and innovation, industrialization will not happen, and without industrialization, development will not happen. There needs to be more investments in high-tech products that dominate the manufacturing productions to increase efficiency and a focus on mobile cellular services that increase connections between people.

Facts and Figures

  •     Basic infrastructure like roads, information and communication technologies, sanitation, electrical power and water remains scarce in many developing countries
  •     16% of the global population does not have access to mobile broadband networks.
  •     For many African countries, particularly the lower-income countries, the existent constraints regarding infrastructure affect firm productivity by around 40 per cent.
  •     The global share of manufacturing value added in GDP increased from 15.2% in 2005 to 16.3% in 2017, driven by the fast growth of manufacturing in Asia.
  •     Industrialization’s job multiplication effect has a positive impact on society. Every job in manufacturing creates 2.2 jobs in other sectors.
  •     Small and medium-sized enterprises that engage in industrial processing and manufacturing are the most critical for the early stages of industrialization and are typically the largest job creators. They make up over 90 per cent of business worldwide and account for between 50-60 per cent of employment.
  •     Least developed countries have immense potential for industrialization in food and beverages (agro-industry), and textiles and garments, with good prospects for sustained employment generation and higher productivity
  •     Middle-income countries can benefit from entering the basic and fabricated metals industries, which offer a range of products facing rapidly growing international demand
  •     In developing countries, barely 30 per cent of agricultural production undergoes industrial processing. In high-income countries, 98 per cent is processed. This suggests that there are great opportunities for developing countries in agribusiness.

Space-based technolgoies for SDG 9

Developing countries often lack the infrastructure and funding needed to access space, missing out on research, innovation and other benefits. Space can support the development of innovation and technologies to solve problems here on Earth. UNOOSA’s Human Space Technology Initiative (HSTI) helps developing countries access space and space-related opportunities for research and development. Read more here.

 

SDG 9 Targets

Learn more about the SDGs

Related Content

Article

Interview with Prof. Emerita Kristine M. Larson

Prof. Larson’s career has been focussed on using the Global Positioning System, and more recently using GPS to measure hydrological parameters, such as water levels in lakes, rivers, and the ocean, soil water content, and the depth of snow. To innovate, she Emerita believes a willingness to be different is key. She feels strongly about bringing space technologies closer to people by communicating better the important role that space technologies play and by making measurements from satellites easier for people to access.

Why geospatial standards matter: Benefits and challenges of EO data standardization

Even 115 years later, the Great Baltimore Fire—which burned down much of the city of Baltimore in the United States—still carries important lessons in standardization. Firefighters from hundreds of kilometres away were sent to assist in putting out the fire, but they could do little to help because their hose couplings did not fit Baltimore’s fire hydrants – meaning, the fire hoses were not standardized. The lack of standardization turned hundreds of firefighters into spectators as the city burned (OGC, ISO & IH, 2018, p.

How has space revolutionised subsidence?

Introduction

Land subsidence is a global phenomenon and is defined as:

“a gradual settling or sudden sinking of the Earth's surface due to removal or displacement of subsurface earth materials”  - National Oceanic and Atmospheric Administration (2021)

The impact of space-based internet communications constellations on water

Imagine a world where your internet is delivered not through cables or cell towers but a vast swarm of orbiting satellites. That world is a very different place. Political borders are no longer communication boundaries. Your phone works just as well in the US as it does in Nigeria and Australia and Cambodia. You can communicate with people on the other side of the planet near the physical limits of information transmission, unconstrained by slow cable networks.

Comment l'espace a révolutionné les affaissements?

 Traduit de l'anglais par Mussa Kachunga Stanis

Introduction


L’affaissement de terrain est un phénomène mondial et se définit comme :

    "Un tassement progressif ou un affaissement soudain de la surface de la Terre dû à l'enlèvement ou au déplacement de matériaux terrestres souterrains" - National Oceanic and Atmospheric Administration (2021)

Wastewater recycling on the ISS and in Singapore

 

How would you feel about drinking your own urine? To most, it is a measure that would only be taken in the direst of circumstances. However, astronauts on the International Space Station (ISS) have been drinking recycled urine every day for the past decade. In 2008, the ISS installed the Water Recovery System, a wastewater recycling device which converts urine, sweat, and atmospheric moisture into drinking water. This device has allowed the ISS to be much more self-sufficient and devices like it could serve to more sustainably produce clean water on Earth.  

Interview with Prof. Emerita Kristine M. Larson

Prof. Larson’s career has been focussed on using the Global Positioning System, and more recently using GPS to measure hydrological parameters, such as water levels in lakes, rivers, and the ocean, soil water content, and the depth of snow. To innovate, she Emerita believes a willingness to be different is key. She feels strongly about bringing space technologies closer to people by communicating better the important role that space technologies play and by making measurements from satellites easier for people to access.

Interview with Margherita Bruscolini, Geospatial & Earth Scientist, Drone Pilot at RSS-Hydro

Margherita is an interdisciplinary Earth scientist and drone pilot with a background in geologic and environmental sciences. She has international experience working in fields such as Earth Observation (EO), remote sensing, drones & geospatial data analysis applied to the environmental and humanitarian sectors, sustainability and climate change. Margherita is passionate about natural and climate-related technologies that can be used to develop sustainable and long-lasting solutions. She is working for a more inclusive world (Women in Geospatial+), without any sort of geographical or social barriers. Keywords: Science communication, Climate Change, STEM, inclusivity, sustainability, nature, hydrosphere, hydrology, water risks, Earth Observation (EO), satellite data, flood modeling, vulnerability, resilience, lifelong learning  Region/Country mentioned: Temperate climates, Arid climates, Luxembourg, Niger  Relevant SDG targets: 1, 4, 6, 9, 11, 13, 17  

Interview with Ruvimbo Samanga

Ruvimbo Samanga, despite her age, has vast experience in the law, space, and water sectors. She is presently involved in a regional study on the integration of GIS and statistical information in Zimbabwe, working towards the promulgation of GIS standards and legislation to support a National Spatial Data Infrastructure (NSDI). Ruvimbo is excited by the merging of sustainable development for water management with space technologies because it is scalable, environmentally friendly, and cost-effective over the long run. Ruvimbo feels strongly that space technologies have a role to play in policy and legal affairs, and also sees potential especially in the use of emerging technologies such as block chain, artificial intelligence (AI) and quantum computing.

Interview with Valdilene Silva Siqueira

Valdilene Siqueira has a diverse background in chemistry and environmental engineering and is currently pursing a master’s degree in Sustainable Territorial Development. Her work and experience has always been closely tied to water management and sanitation. She believes that access to water and ensuring the sustainable management of water resources in a fast-paced changing world are two of the most important challenges for the coming years. Valdilene feels that achieving mutual understanding on how to manage this resource, especially in water-scarce regions, is a real challenge for decision-makers but considers that an intersectoral, integrated and participatory approach is capable of bringing stakeholders together to reconcile their different interests and build collective solutions. 

Interview with Margherita Bruscolini, Geospatial & Earth Scientist, Drone Pilot at RSS-Hydro

Margherita is an interdisciplinary Earth scientist and drone pilot with a background in geologic and environmental sciences. She has international experience working in fields such as Earth Observation (EO), remote sensing, drones & geospatial data analysis applied to the environmental and humanitarian sectors, sustainability and climate change. Margherita is passionate about natural and climate-related technologies that can be used to develop sustainable and long-lasting solutions. She is working for a more inclusive world (Women in Geospatial+), without any sort of geographical or social barriers. Keywords: Science communication, Climate Change, STEM, inclusivity, sustainability, nature, hydrosphere, hydrology, water risks, Earth Observation (EO), satellite data, flood modeling, vulnerability, resilience, lifelong learning  Region/Country mentioned: Temperate climates, Arid climates, Luxembourg, Niger  Relevant SDG targets: 1, 4, 6, 9, 11, 13, 17  

Interview with Ruvimbo Samanga

Ruvimbo Samanga, despite her age, has vast experience in the law, space, and water sectors. She is presently involved in a regional study on the integration of GIS and statistical information in Zimbabwe, working towards the promulgation of GIS standards and legislation to support a National Spatial Data Infrastructure (NSDI). Ruvimbo is excited by the merging of sustainable development for water management with space technologies because it is scalable, environmentally friendly, and cost-effective over the long run. Ruvimbo feels strongly that space technologies have a role to play in policy and legal affairs, and also sees potential especially in the use of emerging technologies such as block chain, artificial intelligence (AI) and quantum computing.

Interview with Valdilene Silva Siqueira

Valdilene Siqueira has a diverse background in chemistry and environmental engineering and is currently pursing a master’s degree in Sustainable Territorial Development. Her work and experience has always been closely tied to water management and sanitation. She believes that access to water and ensuring the sustainable management of water resources in a fast-paced changing world are two of the most important challenges for the coming years. Valdilene feels that achieving mutual understanding on how to manage this resource, especially in water-scarce regions, is a real challenge for decision-makers but considers that an intersectoral, integrated and participatory approach is capable of bringing stakeholders together to reconcile their different interests and build collective solutions. 

Event

Project / Mission / Initiative / Community Portal

Space-Enabled Modeling of the Niger River to Enhance Regional Water Resources Management

River and floodplain landscapes are constantly undergoing change due to natural and manmade processes putting pressure on fluvial systems, such as reservoirs, intensive agriculture, high-impact repetitive droughts and floods and the overall effects of climate change. All these bring about considerable changes, some of which irreversibly degrade ecosystem services, local economies and impact lives, particularly in sensitive transitional zones such as the Sahel region in Africa and its Niger River Basin (NRB).

e-shape

e-shape is a unique initiative that brings together decades of public investment in Earth Observation and in cloud capabilities into services for the decision-makers, the citizens, the industry and the researchers. It allows Europe to position itself as global force in Earth observation through leveraging Copernicus, making use of existing European capacities and improving user uptake of the data from GEO assets.  EuroGEO, as Europe's contribution to the Global Earth Observation System of Systems (GEOSS), aims at bringing together Earth Observation resources in Europe.

In-Service ICT Training for Environmental Professionals

Decision-makers are faced with the constant challenge of maintaining access to and understanding new technologies and data, as information and communication technologies (ICTs) are constantly evolving and as more and more data is becoming available. Despite continually improving technologies, informed decision-making is being hindered by inadequate attention to enabling conditions, e.g. a lack of in-service education and professional training for decision-makers.

Stakeholder

Remote Sensing, GIS and Climatic Research Lab, University of the Punjab

The emerging demand of GIS and Space Applications for Climate Change studies for the socio-economic development of Pakistan along with Government of Pakistan Vision 2025, Space Vision 2047 of National Space Agency of Pakistan, and achievement of UN Sustainable Development Goals (SDGs) impelled the Higher Education Commission of Pakistan (HEC) to establish Remote Sensing, GIS and Climatic Research Lab (RSGCRL) at University of the Punjab, Lahore, Pakistan.