Kenya

Alpha 3
KEN

Related Content

Article

Assessment of flood risk using space technology in Matuga state, Kenya’s coastal area

Flooding poses significant environmental, social and economic challenges globally. With ever-increasing, weather extremes induced by climate change, flooding becomes frequent and severe, particularly in coastal regions like Matuga state in Kenya. Therefore, this study assesses flood risk and its spatial distribution focusing on the interplay between land use land cover, elevation, slope, soil type and rainfall. Using remote sensing data and GIS techniques, a flood risk map for Matuga was generated to identify vulnerable zones. The result signifies that poorly vegetated areas combined with steep topography and high rainfall intensity are key contributors to flooding. Conversely, areas dominated by Ferralic Arenosols and Dystric Arenosols coupled with low slope and extensive shrub cover exhibit lower flood risks. The findings of this study provide critical insights for policymakers, urban planners and environmental managers in designing sustainable flood mitigation strategies. This study underscores the importance of integrating sustainable land management and land use planning in flood risk management for climate-resilient development in Matuga, Kenya.

Interview with Lilian Nguracha Balanga, Founder of Women.conserve

Short description of the Samburu community

The Samburu community is the Nilotic ethnic community of North Central Kenya. They dress in red shukas and adorn themselves with necklaces, bracelets and anklets mostly from beads. They believe in God Nkai, living in the mountains. They are nomadic are pastoralists, meaning that they keep animals (e.g., cows, goats, sheep and camel) which is their main source of livelihood as they get milk, meat and blood for self consumption and/or to be sold. They move from place to place in search of pasture and water.

Interview with Harriette Okal, Associate Scientist, Stockholm Environment Institute

How do you professionally relate to water and/or space technologies?

As a hydrologist, I’ve always been fascinated by the potential of space technologies in transforming water resource management. My work integrates satellite-based Earth Observation (EO) data with hydrological modelling, particularly for drought and flood monitoring, and water availability assessments in regions with scarce ground data. EO technologies allow me to capture real-time, high-resolution data, critical for climate resilience, especially in Sub-Saharan Africa.

Interview with Felix Kasiti, PhD Researcher, University of Stirling

I am currently a PhD candidate at the University of Stirling in Scotland, funded by the Natural Environmental Research Council through the IAPETUS DTP. My research focuses on using SAR Polarimetry to map and monitor floods in Scotland and Guyana. Additionally, I use ground radar to understand signal interactions under simulated flooding conditions, aiming to improve flood detection. My goal is to enhance the management and protection of floodplains and wetlands through advanced radar satellite technology and field-tested methodologies. Before my PhD, I worked as an assistant hydrologist at the SERVIR Eastern and Southern Africa project at the Regional Centre for Mapping of Resources for Development in Nairobi, Kenya, from 2019 to 2022. In this position, I led the development of an operational hydrological model that improved access to hydrological data for ungauged rivers in East Africa. I was also the lead hydrologist in the implementation of a flood early warning system in Malawi, integrating ground measurements and satellite-derived water level data to issue flood forecasts.

Interview with Harriette Okal, Associate Scientist, Stockholm Environment Institute

How do you professionally relate to water and/or space technologies?

As a hydrologist, I’ve always been fascinated by the potential of space technologies in transforming water resource management. My work integrates satellite-based Earth Observation (EO) data with hydrological modelling, particularly for drought and flood monitoring, and water availability assessments in regions with scarce ground data. EO technologies allow me to capture real-time, high-resolution data, critical for climate resilience, especially in Sub-Saharan Africa.

Interview with Felix Kasiti, PhD Researcher, University of Stirling

I am currently a PhD candidate at the University of Stirling in Scotland, funded by the Natural Environmental Research Council through the IAPETUS DTP. My research focuses on using SAR Polarimetry to map and monitor floods in Scotland and Guyana. Additionally, I use ground radar to understand signal interactions under simulated flooding conditions, aiming to improve flood detection. My goal is to enhance the management and protection of floodplains and wetlands through advanced radar satellite technology and field-tested methodologies. Before my PhD, I worked as an assistant hydrologist at the SERVIR Eastern and Southern Africa project at the Regional Centre for Mapping of Resources for Development in Nairobi, Kenya, from 2019 to 2022. In this position, I led the development of an operational hydrological model that improved access to hydrological data for ungauged rivers in East Africa. I was also the lead hydrologist in the implementation of a flood early warning system in Malawi, integrating ground measurements and satellite-derived water level data to issue flood forecasts.

Interview with Lilian Nguracha Balanga, Founder of Women.conserve

Short description of the Samburu community

The Samburu community is the Nilotic ethnic community of North Central Kenya. They dress in red shukas and adorn themselves with necklaces, bracelets and anklets mostly from beads. They believe in God Nkai, living in the mountains. They are nomadic are pastoralists, meaning that they keep animals (e.g., cows, goats, sheep and camel) which is their main source of livelihood as they get milk, meat and blood for self consumption and/or to be sold. They move from place to place in search of pasture and water.

Event

Local Perspectives Case Studies

Map

Disclaimer: The designations employed and the presentation of material on this map do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. They solely serve navigation purposes on this page. Please also note that the map does not filter items if the search term filter is used.

Click on any of the highlighted countries to retrieve further information.

Stakeholder

University of Zimbabwe: Department of Construction and Civil Engineering

The Department of Construction and Civil Engineering at the University of Zimbabwe is one of the 8 departments in the Faculty of Engineering and Built Environment.The department is already a major center for water and sanitation engineering through its MSc programmes which have produced graduates from eastern and southern Africa. The department also boasts of soil and material and timber research facilities which can be used to benefit the country at large.

Zimbabwe National Geospatial and Space Agency

The Zimbabwe National Geospatial and Space Agency (ZINGSA) is a wholly owned Government of Zimbabwe entity, established under the Research act [Chapter 10:20]. It is responsible for designing, promoting, coordinating and conducting research and development initiatives that promote advances in Geospatial Sciences and Earth Observations, Space Engineering, Space Science, Aeronautical Engineering, Mechatronics, Satellite Communication Systems, Global Navigation Satellite Systems (GNSS), Land Positioning Systems, Unmanned Aerial Vehicles (UAV) and Launch of Satellites.

Groundwater Relief

Groundwater Relief is a charity that provides specialist groundwater support to the humanitarian and development sectors. The support is delivered through staff and a global membership of groundwater experts.

Kenya Space Agency

The Kenya Space Agency (KSA) was established under the Ministry of Defence, as the successor to the National Space Secretariat (NSS), by Executive Order through Legal Notice No. 22 of 7th March 2017 with the mandate to promote, coordinate and regulate space related activities in the country.
Vision: The vision of the Agency is to be the premier Space Agency in promotion of access and effective utilization of Space Economy for national sustainable development.

Directorate of Resource Surveys and Remote Sensing, Kenya

The Directorate of Resource Surveys and Remote Sensing (DRSRS) is a key government agency in Kenya, established in 1977 under the Ministry of Environment and Natural Resources, but now under the Executive Office of the President. DRSRS is renowned for its work in mapping and monitoring natural resources and environmental changes through advanced remote sensing and GIS (Geographic Information Systems) technologies.

Omanos Analytics

We founded Omanos with the mission of using space data analysis to empower communities around the world, and to bring the benefits of satellite data insights to a wider audience. Much of our work has used satellite data analysis to reveal the social and environmental impacts of, e.g., mining, agriculture, and the hydrocarbon industry across four continents for range of clients – international NGOs, governments, supra-national bodies including the European Space Agency and the UK Space Agency.

Geomatics Research Group at the Institute of Geography of the Ruhr-University Bochum

Located in the center of the dynamic Ruhr metropolitan region, the Ruhr University, with its 21 faculties, is home to 41,600 students from over 130 countries studying one of the 61 Bachelor and 128 Master programs. "Built to Change" is the guiding principle of the Ruhr University. Since 1965, it has been the driving force behind the transformation from a mining district to a knowledge region.

Global Water Partnership

The Global Water Partnership (GWP) is a global action network with over 3,000 Partner organisations in 179 countries. The network has 69 accredited Country Water Partnerships and 13 Regional Water Partnerships.

The network is open to all organisations involved in water resources management: developed and developing country government institutions, agencies of the United Nations, bi- and multi-lateral development banks, professional associations, research institutions, non-governmental organisations, and the private sector.

Person

mugshot of the person

Erick Villah Okeyo

Space Communicator Kenya Space Agency

Erick Okeyo is a seasoned Space communications specialist, with over a decade of experience within the space industry. In his capacity at the Kenya Space Agency, Erick's primary responsibility involves distilling complex scientific and IT concepts from his organization and devising strategic methods to effectively communicate this information to diverse audiences, both domestically and internationally.

mugshot of the person

Viola Kemunto Orina

Geo-information and Data Engineer Kenya Space Agency

Viola Orina's experience at the Kenya Space Agency directly aligns with the thematic focus of the upcoming conference on "Space Technology for Water Management." Having been involved in projects centered around the practical application of space technology, particularly in monitoring water extents using satellite imagery and remote sensing techniques, Viola brings an understanding of the regional dynamics, challenges, and opportunities pertaining to water resources.

Photo of Felix Isundwa Kasiti

Felix Kasiti

PhD Researcher University of Stirling

Felix is a PhD researcher at the University of Stirling, Stirling, UK, researching on the use of Synthetic Aperture Radar (SAR) in mapping floods. He recently worked as a hydrologist with SERVIR Eastern and Southern Africa project at the Regional Centre for Mapping of Resources for Development, Nairobi, Kenya from 2019 to 2022. 
 
In 2018, he obtained his M.Sc. degree on Water Science (Policy) from the Pan African University Institute of Water and Energy Sciences (PAUWES). Attained his B.Sc.

Space-based Solution

Addressed challenge(s)

Samburu tribe lacks access to safe drinking water - Dry spells due to water scarcity

Collaborating actors (stakeholders, professionals, young professionals or Indigenous voices)
Suggested solution

Construction of sand dams 

Sand dams are a sustainable solution for regions facing water scarcity, especially as climate change impacts become more pronounced. Here’s why they are beneficial: 

  • Easy to build and maintain: Sand dams are straightforward to construct and require minimal maintenance. They consist of a concrete embankment built across seasonal streams that flow during the rainy season but run dry during the dry season. 
  • Long-lasting: Once built, sand dams can last for decades without major refurbishment. Their durability ensures a consistent water supply over an extended period. 
  • Water source: Sand dams provide a reliable water source in arid regions. They capture rainwater and store it in the sand, making it accessible throughout the year—even during dry seasons when water is scarce. 
  • Beneficial for all income levels: While sand dams benefit people of all income levels, they are particularly advantageous for low-income households, disadvantaged communities, and women. 
  • Local collaboration: These dams are constructed in close collaboration with local communities. The project provides necessary materials like cement and steel, while the community contributes natural materials such as sand and stones. 
  • Climate adaptation: Sand dams help communities adapt to climate change by ensuring water availability for both people and livestock. They reduce the time needed to collect water, allowing community members to focus on other activities. 
  • Ecological impact: Sand dams raise the water table around them, benefiting natural vegetation and biodiversity dependent on aquatic ecosystems. They also conserve ecosystems by providing a sustainable water supply.
  • The cost to create a sand dam in Kenya is about 6000 - 8500 EUR - sometimes provided 50 / 50% by NGO and community - used for material.

Outline of the solution

Several considerations to be taken before constructing a sand dam: 

  • To identify if a sand dam is a suitable solution, information on the river where the sand dam is desired to be built must be collected, particularly river width and depth to bedrock.
  • The concrete dam wall needs to be anchored onto the bedrock. Excavation must be done until solid bedrock is reached to anchor the wall.  
  • The upper and middle courses of a river, at least 4km from the head of a valley are the most suitable areas due to high course sediment load and a reasonable riverbed gradient of <5%. 
  • The construction of a sand dam needs a lot of manpower. It needs to be constructed in coordination with the dry season Jan to Feb or June to Sept.  
  • It takes a few years for the sand dam to fill up, as a few seasons are needed for the sand to build up (sedimentation process).  
  • The remote sensing data that can be used needs a resolution suitable to the river width. Sand dams are typically on rivers between 5-50 meters in width. 

Steps to be taken

Further, several important factors must be considered to ensure its effectiveness and sustainability: 

  1. A geological study needs to be developed, this includes the study of the geology of the region, the development of geological maps, digital elevation model (DEM) maps, and normalized difference vegetation index (NDVI) map. 
  2. Precipitation maps of the location need to be developed. 
  3. Site Selection: Choose a suitable location along a seasonal riverbed or stream. The site should have a consistent flow during the rainy season and dry up during the dry season. 
  4. Assessment of the geology and soil conditions to ensure that the sand and rock layers are suitable for dam construction.  
  5. Hydrological Assessment: Study the local hydrology, including rainfall patterns, runoff, and stream flow. This information helps determine the dam’s capacity and water storage potential. 
  6. Design and Construction: Design the dam’s dimensions based on the expected water flow. The dam should be wide enough to capture sufficient sand and water. 
  7. Construct a concrete wall across the riverbed, reinforced with steel bars. The wall should extend into the riverbanks. 
  8. Create a spillway to allow excess water to flow downstream during heavy rains. 
  9. Use locally available materials (such as sand, stones, and cement) to build the dam. 
  10. Sand Storage: The primary purpose of the dam is to store sand and water. As water flows, it deposits sand behind the dam. 
  11. The sand acts as a natural filter, allowing water to percolate and recharge the groundwater. 
  12. Maintenance and Monitoring: Regularly inspect the dam for signs of erosion, cracks, or damage. Train community members to perform minor repairs and maintenance. 
  13. Long-Term Impact: Consider the broader impact of the sand dam on the ecosystem, vegetation, and wildlife. 
  14. As in Samburu County most rivers are seasonal, the seasonality of the existing rivers needs to be assessed. Furthermore, the sediment load needs to be assessed; the river must be composed mostly of medium-coarse-grained sand and low clay/ silt content 
sand dam in Kenya
Figure 1: Kipico sand dam, Makueni County, Kenya (Ritchie., 2022)

Accomplished progress 

Referring to the outline of the solution mentioned before, step 1 has been already developed: 

For the construction of sand dams, the elevation of the area (DEM) of interest and the differentiated vegetation index (NDVI) are crucial required data:  

  • Digital Elevation Model 
Samburu DEM map
Figure 2: Elevation Map made with QGIS. Version 3.32.3 / Version 3.28.11 LTR. 

 

  • Normalized difference vegetation index 
Samburu NDVI map
Figure 3: NDVI made with QGIS. Version 3.32.3 / Version 3.28.11 LTR.  

 

Step 2 has been developed together with another space-based solution

Future steps  

For the successful construction of the sand dams following steps (3-6) are in development: 

3. Site and river selection

4. Assessment of the geology and soil conditions 

5. Hydrological assessment 

6. Design and construction of the dam

Steps 6-14 will be developed after steps 3-6 has been developed. Finally, for the implementation of the construction plan the engagement of the community is needed to find local partners, such as NGOs who are giving out the equipment and to identify community members, that are willing to help in the building of the dam. 

Related space-based solutions

Harnessing rain: A system of safe, secure and sustainable drinking water - in development

Construction of sand dams for Samburu County - in development

Rainwater harvesting in Samburu County – in development

Determining optimum sites for rainwater harvesting - in development

Water suitability map (Samburu County, Kenya) - in development

Sources
Maddrell, Simon, and Ian Neal. 2012. “Sand Dams: A Practical Guide”.
Cozens, Jack. 2017. “Technical Feasibility Framework For Sand Dams Applied To Eastern Chad”. Loughborough University. https://repository.lboro.ac.uk/projects/WEDC_Masters_Dissertations/86858.
Forzieri, Giovanni, Marco Gardenti, Francesca Caparrini, and Fabio Castelli. (1AD) 2008. “A Methodology For The Pre-Selection Of Suitable Sites For Surface And Underground Small Dams In Arid Areas: A Case Study In The Region Of Kidal, Mali”. Physics And Chemistry Of The Earth, Parts A/B/C 33. Pergamon: 74-85. doi:10.1016/J.PCE.2007.04.014.
Hofkes, E H, and J T Visscher. 1986. “Artificial Groundwater Recharge For Water Supply Of Medium-Size Communities In Developing Countries”. https://www.samsamwater.com/library/Artificial_groundwater_recharge_for_water_supply_of_medium-size_communities_in_developing_countries.pdf.

Maddrell, S. and Neal I. (2012): Sand Dams: a Practical Guide: Maddrell_and_Neal_2012_Sand_Dams_a_Practical_Guide_LR.pdf (samsamwater.com) 

Bonham, C. *(2017): Technical Feasibility Framework for Sand Dams  Applied to Eastern Chad. https://www.lboro.ac.uk/media/wwwlboroacuk/external/content/research/wedc/dissertations/2016-2017/BONHAM-COZENS,%20JACK.pdf  

Forzieri G et al. (2008): A methodology for the pre-selection of suitable sites for surface and underground small dams in arid areas: A case study in the region of Kidal, Mali: https://www.sciencedirect.com/science/article/pii/S1474706507000770?ref=pdf_download&fr=RR-2&rr=826e98cdbf7a48b5  

Hofkes, E. H., and Visscher, J. T. (1986): Artificial Groundwater Recharge for water supply of medium size communities in developing countries : Artificial_groundwater_recharge_for_water_supply_of_medium-size_communities_in_developing_countries.pdf (samsamwater.com) 

Keywords (for the solution)
Climate Zone (addressed by the solution)
Dry
Habitat (addressed by the solution)
Region/Country (the solution was designed for, if any)
Relevant SDGs