Sri Lanka

Alpha 3
LKA

Related Content

Article

Local Perspectives Case Studies

Need of geospatial analysis on further strengthening water sensitive urban planning and design to stormwater management in the Greater Colombo metropolitan area

Beddagana wetland Park in western province, outside of Colombo. Photo by Sureshkumar1213. CC.
In urban environments, three distinct water systems can typically be identified: (1) the drinking water supply, (2) the wastewater/sewer system, and (3) the rainwater/stormwater management system. While many cities are situated within urban watersheds, urban development has a significant impact on urban hydrology-associated environments, including waterways, coastal waters, and water supply catchments. Managing water flows within an urban setting is critically important, as original natural ecosystems have undergone significant land changes alongside anticipated precipitation variations due to climate change. It is imperative for urban areas situated on or near waterfronts to prioritize this matter. Therefore, water-sensitive urban planning and design framework integrating Nature-based Solutions in coastal, delta, and riverine cities within urban watersheds. It is similar to Green Infrastructure and/or Stormwater Best Management Practices, as well as Low-Impact Development, and the Water Sensitive Urban Design concept, which is an innovative framework for urban planning and design. It has evolved from its initial focus on stormwater management to encompass a more comprehensive approach to sustainable urban water management. It offers a cohesive framework for integrating the interactions between the built environment, including urban landscapes and the urban water cycle. Colombo, the commercial and financial hub of Sri Lanka, faces significant challenges due to its aging and congested urban infrastructure. The city is built on thirty-six wetland patches linked by a 50-kilometer man-made canal system called the Colombo Wetland Complex (CWC). Due to its strong connection with its wetland complex, Colombo City was recognized as the first capital to be accredited as an International Wetland City by Ramsar in 2018. The CWC includes open-water lakes, a canal system, wet woodlands, herb-dominated areas, riverine forests, active and abandoned paddy fields, and reedbeds. These wetlands provide crucial ecosystem services, enhancing residents' well-being through water purification, urban flood mitigation, temperature regulation, recreational opportunities, and urban agriculture. Revitalizing and developing the city, as well as encroachments, has led to the loss of its natural mosaic and ecosystem services. It is essential to explore sustainable solutions that address significant urban water management issues, including stormwater, wastewater, and groundwater.

Map

Disclaimer: The designations employed and the presentation of material on this map do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. They solely serve navigation purposes on this page. Please also note that the map does not filter items if the search term filter is used.

Click on any of the highlighted countries to retrieve further information.

Stakeholder

International Water Management Institute

IWMI is a research-for-development (R4D) organization, with offices in 13 countries and a global network of scientists operating in more than 30 countries. For over three decades, our research results have led to changes in water management that have contributed to social and economic development. IWMI’s Vision reflected in its Strategy 2019-2023, is ‘a water-secure world’.

Stimson Center

The Energy, Water, & Sustainability Program at the Stimson Center addresses important and timely policy issues and technical opportunities concerning energy, water, and sustainable development in the Global South from a multidisciplinary perspective.

Our work on transboundary river basins identifies pathways towards enhancing water security and optimizing tradeoffs between water, energy, and sustainable development options in the Mekong, Ganges-Brahmaputra, Indus, Aral Sea and Euphrates-Tigris river basins.

Person