Take urgent action to combat climate change and its impacts
Climate change is now affecting every country on every continent. It is disrupting national economies and affecting lives, costing people, communities and countries dearly today and even more tomorrow. Weather patterns are changing, sea levels are rising, weather events are becoming more extreme and greenhouse gas emissions are now at their highest levels in history. Without action, the world’s average surface temperature is likely to surpass 3 degrees centigrade this century. The poorest and most vulnerable people are being affected the most.
Affordable, scalable solutions are now available to enable countries to leapfrog to cleaner, more resilient economies. The pace of change is quickening as more people are turning to renewable energy and a range of other measures that will reduce emissions and increase adaptation efforts. Climate change, however, is a global challenge that does not respect national borders. It is an issue that requires solutions that need to be coordinated at the international level to help developing countries move toward a low-carbon economy.
To strengthen the global response to the threat of climate change, countries adopted the Paris Agreement at the COP21 in Paris, which went into force in November of 2016. In the agreement, all countries agreed to work to limit global temperature rise to well below 2 degrees centigrade. As of April 2018, 175 parties had ratified the Paris Agreement and 10 developing countries had submitted their first iteration of their national adaptation plans for responding to climate change.
Climate Summit 2019
The Secretary-General will convene a Climate Summit in September 2019 to bring climate action to the top of the international agenda. Mr. Luis Alfonso de Alba, a former Mexican diplomat, will be his Special Envoy to lead its preparations.
The Summit will focus on the heart of the problem – the sectors that create the most emissions and the areas where building resilience could make the biggest difference – as well as provide leaders and partners the opportunity to demonstrate real climate action and showcase their ambition.
To read about the commitments that regions, cities, businesses, investors and civil society pledged during the Global Climate Action Summit in California, September 2018, click here.
Facts and Figures
As of April 2018, 175 parties had ratified the Paris Agreement and 168 parties had communicated their first nationally determined contributions to the UN framework convention on Climate Change Secretariat.
As of April 2018, 10 developing countries had successfully completed and submitted their first iteration of their national adaptation plans for responding to climate change.
Developed country parties continue to make progress towards the goal of jointly mobilizing $100 billion annually by 2020 for mitigation actions.
Thanks to the Intergovernmental Panel on Climate Change we know:
From 1880 to 2012, average global temperature increased by 0.85°C. To put this into perspective, for each 1 degree of temperature increase, grain yields decline by about 5 per cent. Maize, wheat and other major crops have experienced significant yield reductions at the global level of 40 megatons per year between 1981 and 2002 due to a warmer climate.
Oceans have warmed, the amounts of snow and ice have diminished and sea level has risen.From 1901 to 2010, the global average sea level rose by 19 cm as oceans expanded due to warming and ice melted. The Arctic’s sea ice extent has shrunk in every successive decade since 1979, with 1.07 million km² of ice loss every decade
Given current concentrations and on-going emissions of greenhouse gases, it is likely that by the end of this century, the increase in global temperature will exceed 1.5°C compared to 1850 to 1900 for all but one scenario. The world’s oceans will warm and ice melt will continue. Average sea level rise is predicted as 24 – 30cm by 2065 and 40-63cm by 2100. Most aspects of climate change will persist for many centuries even if emissions are stopped
Global emissions of carbon dioxide (CO2) have increased by almost 50 per cent since 1990
Emissions grew more quickly between 2000 and 2010 than in each of the three previous decades
It is still possible, using a wide array of technological measures and changes in behavior, to limit the increase in global mean temperature to two degrees Celsius above pre-industrial levels
Major institutional and technological change will give a better than even chance that global warming will not exceed this threshold
* Acknowledging that the United Nations Framework Convention on Climate Change is the primary international, intergovernmental forum for negotiating the global response to climate change.
Space-based Technologies for SDG 13
Climate-related hazards can damage societies and economies worldwide. Satellites help monitor climate variables such as greenhouse gases, sea-level and deforestation. UNOOSA strengthens resilience to climate-related hazards and natural disasters, including by increasing access to space-based information for all countries through UN-SPIDER. Read more here.
Prof. Hesham El-Askary works at Chapman University in the Earth Systems Science Data Solutions (ESsDs) lab. Here, he supervises students on the use of satellite earth observations for topics including agriculture, water resources, air quality and climate action, and makes use of Artificial Intelligence (AI) and Machine Learning (ML). Prof. El-Askary is researching natural and anthropogenic pollution’s influence on the environment and is particularly interested in the concept of “glocal” impact—how what’s happening globally in terms of climate affects us locally. He believes that one of the biggest challenges in implementing sustainable water management is the lack of data to monitor progress, and advocates for space technologies to mitigates this shortage.
In this interview, we discuss how time-series of satellite data can be used to monitor the environmental, and more specifically the water domain, using the data cube technology.
The following interview with Dr. Sherine Ahmed El Baradei is focusing on water quality and its relation to space technology. Water is the essence of life. Thus preservation of water quality is of a big concern to human health and to fauna and flora in water bodies. The interview explains what is water quality and what are water quality parameters of water bodies. Furthermore, the importance of using space technologies and applications in contributing to water quality monitoring and determination of hydraulic and hydrologic conditions is thoroughly discussed. For example, temporal resolution of satellites and their role in obtaining accurate imaging and data is clarified and the satellites concerned with water quality monitoring are pointed out. Considering the important role of groundwater in arid regions, the use of GRACE Mission data in Egypt is mentioned. Moreover, key influences on water quality in Egypt are discussed and the relation of water quality to water scarcity in the country and ways to preserve water quality is being discussed. Furthermore, the potential of space-based monitoring used to address water issues from hydrological to water resources issues in the country or region is pointed out. The challenges of the use of space technology for hydrology and water-related topics in the MENA region is also discussed. Light is shed on the project done by NASA to recycle astronauts’ waste into energy and power. Sustainability is of a great importance to or communities, and thus it is discussed how sustainable it is to build cities in the desert, or to divert water to where people are instead of moving people to existing water sources. Finally, a discussion about ways we can employ to improve awareness and capacity building on the use of space technology for water and challenges in this field are discussed.
Marie-Francoise Voidrot studied meteorology and therefore knows the importance of satellite technology in predicting and monitoring weather patterns. She worked specifically on the integration of information needed by forecaster’s specialized decision tool using WMO standards for many years. Marie-Francoise is now the European Director of the innovation program at the Open Geospatial Consortium (OGC). She finds her work fascinating, as it is useful for the sustainability of humankind and for business development and any improvement is very quickly adopted and implemented.
Professor Wagner holds a Ph.D. in remote sensing. He gained his experience at renowned institutions, including academia, space agencies and international organisations. He is the Dean of the Faculty for Mathematics and Geoinformation and cofounder of the Earth Observation Data Centre for Water Resources among other affiliations.
Please describe how your professional (and/or personal) experience relates to space technologies and their applications to water resources management.
I am an expert in hydroinformatics, mainly involved in research projects and research supervision of MSc and PhD students. My research focusses on physically based models for inland waters (rivers and lakes). One of the major fields where modelling is used in water resources is flooding. In order to have adequate representation of floods, most models require large amounts of data, both for model building and model usage.
You are currently a Senior Fellow and Cluster Coordinator: Nature, Climate, and Health at UNU – CRIS, can you elaborate on your role, and how it relates to water?
The world faces big problems like climate change, water shortages, and health issues. At UNU CRIS, our Nature, Climate, and Health Cluster studies how these problems are linked. We see that climate change makes things like water and food scarce, which hurts people's health. Our research shows how climate change affects water, food, and health security.
Egline Tauya has focussed her career on natural resource management, after growing up in a rural area and learning to value such resources from a young age. Her work has been based in Africa and has included the use space technologies to map flood risks and vulnerable areas around the Zambezi and Limpopo River basins. Egline develops Environmental Outlooks as part of her work, which are reports that provide an integrated assessment of the state and trends of key environmental resources, such as freshwater, forest, and wildlife. Egline strongly believes in the integration of indigenous knowledges into water resource management and the crucial, but currently limited use of remote sensing in groundwater monitoring.
Sawaid Abbas, Assistant Professor at the Centre for Geographical Information System, University of the Punjab, Lahore, Pakistan discussed his extensive work in addressing water-related challenges through the nexus between smart sensing and space technologies. His thematic focus spans water scarcity, food security, climate risks, and environmental monitoring with an emphasis on the Asia-Pacific region, including Pakistan and China. Key Sustainable Development Goals (SDGs) guiding his work include SDG2 (Zero Hunger), SDG13 (Climate Action), SDG15 (Life on Land), and SDG11 (Sustainable Cities and Communities).
Abbas's passion for water emerged during his early career at the World Wide Fund for Nature (WWF), where he was involved in Pakistan’s Wetland Program and witnessed the impact of water on associated ecosystems. This sparked his interest in understanding and managing water, forestry, and wildlife resources. He recently studied coastal ecosystems and their responses to climate and anthropogenic stressors in the Asia-Pacific region. The Living Indus – Investing in Ecological Restoration has become a new focus of interest for him, addressing sustainability challenges related to food security, river basin management, and efficient water use in alignment with the UN Decade of Ocean objectives.
Abbas shared his fascination with water, recognizing its complex and essential nature. He is captivated by its beauty in all forms and acknowledges its fundamental importance for life on Earth. This water connection further motivates his commitment to addressing global water challenges and promoting sustainable water use through innovative solutions.
Sawaid Abbas's work, stimulated by both professional commitment and personal fascination, stresses the critical role of space technologies, particularly earth observation, smart sensing nexus, and artificial intelligence in addressing water-related challenges. His research contributes to the development of innovative solutions for sustainable water use, environmental protection, and disaster response, aligning with global goals for a more resilient and water-secure future.
How do you personally and professionally relate to water?
Growing up in Israel, water scarcity was a constant backdrop to my childhood. The arid climate and frequent droughts shaped my relationship with water from an early age. One vivid memory that remains stamped in my mind is the series of TV campaigns highlighting the importance of water conservation. I recall sitting in front of the television, concerned by the urgency conveyed in those campaigns. The images of dry landscapes and the emphasis on every drop of water as precious left a lasting impression.
In recent years, with the rapid development of satellite-based Earth observation technologies, more and more quasi-global satellite products observe the Earth.
C’est encore récemment, en 1916, que l’explorateur Padre De Agostini révéla une partie de la topographie des glaciers Escondidos (« glaciers caches » en francais). En Patagonie (De Agostini, 1949).
The exacerbation of climate change-induced droughts, among other weather extremes, is escalating into a critical global challenge particularly in arid regions like the Southwestern U.S. where droughts pose grievous environmental and socio-economic threats. Increasingly frequent, intense, and enduring droughts are commonplace generally in Western U.S. inflicting damages on crops and aggravating record-breaking wildfires year after year. Drought is the second-most expensive natural disaster in the U.S. behind hurricanes, costing an average of $9.6 billion in damages per event.
Therefore, continuous innovation and deployment of cost-effective and time-efficient water resources monitoring tools could help mitigate severe environmental and socio-economic impacts of droughts which currently impact livestock and wildlife management in Southwest U.S. A recent innovation as a potential climate change adaptation solution is the Surface Water Identification and Forecasting Tool (SWIFT). The Google Earth Engine-based tool is a remote sensing-based technology that leverages optical imagery derived from Landsat 8 OLI and Sentinel-2 Multispectral Instrument (MSI), and radar imagery from Sentinel-1 C-Band Synthetic Aperture Radar (C-SAR) to monitor near real-time the availability of water in stock ponds and tanks. As drought conditions are expected to worsen with rising global temperatures, SWIFT is designed to provide a valuable and affordable stock water monitoring solution for cattle producers and land managers, etc.
Analysts have long noted that extreme precipitation appears to intensify with temperature at a rate of around 7%/°C, which is governed by the Clausius-Clapeyron (CC) equation. This study aims to investigate the relationship between the spatio-temporal properties of hourly precipitation and daily dew point temperature. Specifically, the global gridded products of bias-corrected Climate Prediction Center morphing technique (CMORPH-CRT) and ERA5 reanalysis were applied for nine locations in the world.
The results show that significant spatial heterogeneity in extreme precipitation scaling is present at the selected locations, which might be attributed to local conditions, such as regional climate and the proximity to humidity sources. Despite the potential limitations, this study provides insight into the application of high-resolution open-access global gridded products in analysing precipitation scaling.
On 2 February 2020, we celebrate World Wetlands Day to raise global awareness about the vital role of wetlands for people and our planet. This year’s edition highlights the connection between water, wetlands, and life.
Several ongoing projects are trying to detect plastic pollution in oceans by using Space technology
The ocean is where life began. It is home to the majority of the Earth’s plants and animals. However, there is currently another habitant endangering all species living under and above water. Humans included. The habitant is called “Plastic”. Plastic’s largest market is packaging designed for immediate disposal (Sigogneau-Russell, 2003).
Since ancient times, people have established communities in river deltas because it provides water, fertile land, and transportation access, making them an ideal place to live. This pattern has been carried forward to the present. With nearly 6 billion people living in river deltas, they are one of the most densely populated places on Earth (Kuenzer and Renaud, 2011). However, they are facing threats such as climate change, sea level rise, land use changes, and ecosystem degradation.
About 40% of the World’s population lives within 100 km of the coast (United Nations 2017). Sea levels are on the rise around the World and the trend is accelerating every year. The UN, countless international organizations and national agencies are working hard every year to support the efforts of climate scientists to accurately model our changing climate. The role of ice in shaping the Earth’s seas is indisputable. As continental ice melts and as ice sheets break off from continental shelves and fall into the sea, more and more coastal communities are threatened.
Water in the atmosphere, in the soil, in rivers and oceans is in continuous exchange via the global water cycle. This is commonly thought to be the circular movement of water that evaporates from the Earth's surface, rises on warm updrafts into the atmosphere, and condenses into clouds. It is transported by the wind as water vapour, and eventually falls back to the Earth’s surface as rain or snow.
From 10 to 13 May 2022, the United Nations Officer for Outer Space Affairs organized the 5th International conference on the use of space technology for water resources management. The conference was hosted in a hybrid format in Accra, Ghana, by the University of Energy and Natural Resources, Sunyani on behalf of the Government of Ghana. The event was attended by several senior government representatives of the host country including Dr. Mahamudu Bawumia, Vice President of the Republic of Ghana, the Honorary Minister of Education Dr.
Recently, in July 2021, destructive and deadly floods occurred in Western Europe. The estimated insured losses only in Germany could approach 5 billion Euros (AIR Worldwide, 2021). However, the total amount of the damage is currently not foreseeable due to the variety and complexity of the damage patterns and the unbelievable extent of the disaster. It seems the socio-economic losses will dramatically increase and break a new record in the insurance industry after evaluating the complete record of damages’ reports (see Figure 1).
Seriez-vous en mesure d´imaginer un groupe de jeunes femmes impliquées dans l´émancipation des femmes par le biais des technologies géospatiales ? Cela s´est passé du 10 au 13 juillet 2019 dans le premier rallye géospatial dédié aux femmes et aux aqueducs ruraux. Lors de cet évènement, trente femmes issues de contextes très différents se sont réunies avec le même objectif, construire un espace dédié à cette mission, sur le Campus de Nicoya (nord du Costa Rica) de l'Université du Costa Rica (UCR).
On September 10th of 2023, Storm Daniel made landfall in northeastern Libya, bringing torrential levels of rain and strong winds (Figure 1). This onslaught of rain caused two big dams in the region to break – the Abu Mansour dam and the Derna dam, 75 metres and 45 metres tall respectively. It is believed that the Abu Mansour dam broke first, after its reservoir was filled beyond capacity. The dam collapsed and sent a rush of water towards the Derna dam further downstream (Figure 2).
Ethiopia, like many developing countries, faces significant threat from droughts triggered by climate change. The country's heavy reliance on agriculture for production, export revenues, and employment makes it highly susceptible to climate change-induced challenges, such as frequent floods, droughts and rising temperatures. Therefore, this research aims to assess drought-prone areas in Meyo district, Borena Zone, thereby contributing to the attainment of SDG 13.1 and the creation of a more resilient and sustainable future in the face of climate change. To achieve the objective, the study employs the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) as indicators and the drought risk map was developed using weighted overlay analysis. Landsat images and rainfall datasets from December in the years 2002, 2012, and 2022 were analyzed to track changes. The result reveals a clear inverse relationship between NDVI and LST, where higher temperatures coincide with decreased NDVI values, signifying vegetation stress caused by reduced water availability. The study also highlights the deficient rainfall and high drought vulnerability in the norther and eastern parts of the study area. The provided drought risk map classifies areas into Low, Moderate, and High risk, illustrating the evolving drought scenario and it signifies increasing severity of drought risk in recent years, particularly from 2012 to 2022. The finding holds vital information for decision-makers, policymakers, and stakeholders in devising effective strategies to mitigate the adverse effect of drought and build resilience in the of climate change.
El 2 de febrero de 2020 celebramos el Día Mundial de los Humedales para concienciar al mundo sobre el papel vital de los humedales para las personas y nuestro planeta. La edición de este año destaca la conexión entre el agua, los humedales y la vida.
Climate has become a subject of global concern, especially in recent decades. Climate models are practical tools that can simulate physical processes and predict future change. However, because of the complexity of atmospheric, ocean, and land processes, scientists are faced with significantly large uncertainties in climate models. As world leaders grapple with the urgency of climate action, the role of space-based technology and data has become increasingly critical. Various observed climatic variables (e.g.
The impacts of climate change are ever more apparent. The frequency and scale of devastation and destruction of weather hazards are on an increasing trend. According to the latest Intergovernmental Panel on Climate Change Report (IPCC, 2021) climate change is intensifying the water cycle. This will cause more intense droughts in many regions. Moreover, water-related extremes impact the quality of life disproportionately strong. Drought accounts for 25% of all losses from weather-related disasters in the United States of America (Hayes et al., 2012).
As population becomes larger the demand for water soars, including water needed for domestic, industrial and municipal uses (Mogelgaard 2011). One example of that, is India, where on 20 June 2019 the city of Chennai almost run out of water. Satellite images show the extent of the water shortage in the city (figure 1). While people are queuing up to get water from water trucks that transfer water to the city, the greatest struggle is taking place in the city’s municipal buildings and businesses. Hospitals are facing the threat of not having enough water to treat patients and to clean equipment, and businesses are forced to shut down and wait until the crisis is over.
When we think about geospatial technology, many of us imagine satellites for Earth observation and navigation, drones, and complex sensors used to collect information from the terrestrial surface. We also believe that most of the people capable of developing applications using geospatial data should hold a science-related Master or Ph.D. degree. The previous statement could not be further from the truth. Advances in technology have made access to geospatial technology possible for everybody.
Have you ever questioned if there would be enough food at the store for everyone in your community? If you frequent a grocery store or market, probably not. Every Sunday I go to the grocery store with a list of foods I’ll need for the week and no contingency plan for what to do if there isn’t enough. If something is out of stock, I’ll just go to the next grocery store down the road. We take it for granted that certain foods will always be available for us to purchase. However, many people do not have the luxury of a reliable food source.
It was not long ago, in 1916, that the explorer Padre De Agostini surveyed part of the topography of the Escondidos glaciers (“hidden glaciers”, in English) in Patagonia (De Agostini, 1949). Today, space technology such as NASA’s ICESat Missions and Shuttle Radar Topography Mission (SRTM) data, allow to monitor changes in glaciers over time.
Plusieurs projets en cours tentent de détecter la pollution plastique dans les océans en utilisant la technologie spatiale.
L’océan est où la vie a commencé. Il abrite la majorité des plantes et des animaux de la Terre. Cependant, il y a actuellement un autre habitant qui met en danger toutes les espèces vivantes sous et au-dessus de l’eau, les humains inclus. Cet habitant est appelé « plastique ». Le plus grand marché du plastique est celui des emballages destinés à l’élimination immédiate (Sigogneau-Russell, 2003).
Forest cover refers to the extent of land area covered by forests. It can be expressed either as a percentage relative to the total land area or in absolute terms measured in square kilometers or square miles (ScienceDirect). As of 2020, globally, forests account for 31 percent of the land area with roughly half of this area considered relatively intact. The total forest coverage is 4.06 billion hectares.
Environ 40 % de la population mondiale vit à moins de cent kilomètres des côtes (Nations unies, 2017). Le niveau des mers est en hausse dans le monde entier et la tendance s'accélère chaque année. L'ONU, d'innombrables organisations internationales et des agences nationales travaillent ardemment chaque année pour soutenir les efforts des climatologues afin de modéliser avec précision notre climat changeant. Le rôle de la glace dans le modelage des mers de la Terre est indiscutable.
Coral reefs provide integral services to social, economic, and ecological systems. They support more than 500 million livelihoods worldwide and account for 15% of gross domestic product in more than 20 countries. A quarter of all marine species on planet Earth, representing 28 of the 35 animal phyla, can be found in coral reefs, and novel compounds derived from these organisms provide numerous useful medicinal applications.
The provision of water resources is one of the most fundamental ecosystem services . An acute scarcity of water data in both, the spatial and temporal domains in many regions prompts the urgency to assess risks related to water such as water quality decline, floods and droughts. Remote sensing does provide us with relevant data for water resources monitoring, but this data still needs to be validated with in-situ observations and measurements.
Jakarta, “the sinking city”, is the current capital city of Indonesia. Located on the Java Sea, this coastal city is home to nearly 30 million people within the greater-Jakarta area. Jakarta has grappled with water management issues for decades, leading to several current day water-related crises. Access to a reliable, potable water supply is extremely limited as there is a significant disparity between those with piped water access and those without. Citizens without piped water access have consequently relied heavily on groundwater and have dug thousands of unregulated wells as a result. This has led to a second water crisis – the chronic overextraction of Jakarta’s underground aquifers. Land subsidence is of the utmost concern as this sinking city is placed at high flood risk from the surrounding ocean. Approximately 40% of Jakarta now lies below sea level as a result and predictive models suggest that the entire city will be underwater by 2050 (Gilmartin, 2019). Compounding these problems, the climate crisis has led to significant sea level rise as glaciers and ice caps continue to melt (Intergovernmental Panel on Climate Change, 2019; Lindsey, 2022). As the city of Jakarta continues to sink and sea levels rise, millions of citizens within Jakarta are at extremely high risk of flooding, particularly during monsoon season. Thousands of residents have already been forced to abandon their homes in search of improved conditions and higher ground (Garschagen et al., 2018).
As population becomes larger the demand for water soars, including water needed for domestic, industrial and municipal uses (Mogelgaard 2011). One example of that, is India, where on 20 June 2019 the city of Chennai almost run out of water. Satellite images show the extent of the water shortage in the city (figure 1). While people are queuing up to get water from water trucks that transfer water to the city, the greatest struggle is taking place in the city’s municipal buildings and businesses. Hospitals are facing the threat of not having enough water to treat patients and to clean equipment, and businesses are forced to shut down and wait until the crisis is over.
Snow has a crucial contribution to Earth’s climate and helps to maintain the Earth’s temperature. When snow melts, it aids in providing water to people for their livelihood and affects the survival of animals and plants (National Snow and Ice Data Center). Approximately 1.2 billion people - constituting one-sixth of the global population - depend on snowmelt water for both agricultural activities and human consumption (Barnett et al., 2005).
Short summary:
Digital twin (DT) technology for water systems is currently blooming. How are DT applied in water systems and why did they become so popular? In this article, the framework of DT and crucial technologies to build them such as space-based satellites, modern communication technologies, artificial intelligence, etc. are revealed to present how DT functionality is implemented. Application scenarios of DT from global to regional are shown with typical examples for modeling the global water cycle, regional floods, and urban water supply systems. Though DT offers a valuable solution in the context of water systems, attention needs to be given to accuracy, interoperability and data security of DT. DT can be smart systems, helping in comprehensive analysis to support decision making.
No hace mucho, en 1916, el explorador Padre De Agostini inspeccionó parte de la topografía de los glaciares Escondidos de la Patagonia (De Agostini, 1949). Hoy en día, la tecnología espacial, como las misiones ICESat de la NASA y los datos de la Shuttle Radar Topography Mission (SRTM), permiten seguir los cambios de los glaciares a lo largo del tiempo.
Imagine a world where your internet is delivered not through cables or cell towers but a vast swarm of orbiting satellites. That world is a very different place. Political borders are no longer communication boundaries. Your phone works just as well in the US as it does in Nigeria and Australia and Cambodia. You can communicate with people on the other side of the planet near the physical limits of information transmission, unconstrained by slow cable networks.
Can you imagine a group of young women empowering other women using geospatial technology? From July 10 to 13 July 2019 in the First Geospatial Rally for Women in Rural Aqueducts took place, where 30 women from very different contexts met with the same goal, to build an empowering space, in the Nicoya Campus (north of Costa Rica) of the University of Costa Rica (UCR). This was done with the intention to learn from each other.
In 2019, floods caused 43.5% of all deaths due to natural disasters and thereby represent the deadliest type of disaster with an increasing number of events compared to previous years (CRED, 2019). Floods furthermore lead to the highest number of people affected compared to other disasters as they affect human activities and the economy (CRED, 2019; Elagib et al. 2019).
Sea-level rise is a key indicator of climate change and accurately monitoring it is essential for climate science, policy-making, and protecting low-lying regions at risk. Satellite remote sensing has become an efficient tool for surveying sea level change at global and regional scales. TOPEX/Poseidon, a series of modern high-precision ocean altimeter satellites marks the beginning of the satellite altimeter era. Presently, Jason-CS/Sentinel-6 is the new advanced generation of high-precision altimeters. The application of satellite altimetry can be used to measure sea surface topography with high accuracy and reliability and further to support ocean forecasting systems, environmental monitoring and climate monitoring. The Jason-CS/Sentinel-6 satellites will extend the satellite data record through at least 2030, providing a nearly 40-year record of sea-level data.
Plus la population augmente, plus la demande en eau augmente, notamment l'eau nécessaire aux usages domestiques, industriels et municipaux (Mogelgaard 2011). L'Inde en est un bon exemple : le 20 juin 2019, la ville de Chennai a failli manquer d'eau. Des images satellites ont montré l'ampleur de la pénurie d'eau dans la ville (schéma 1). Alors que les habitants faisaient la queue pour de l'eau stockée dans des camions-citernes qui la rendaient disponible dans la ville, le véritable défi de gestion concernait les bâtiments municipaux et les entreprises de la ville. La pénurie d´eau a gravement affecté la capacité des hôpitaux à soigner les patients et à nettoyer les équipements, et a contraint les entreprises à fermer leurs portes jusqu'à la fin de la crise.
During the summer season tropical cyclones (TC) tend to cause flood disasters over coastal areas. In ancient times fishermen along the coast of China predicted the coming of tropical cyclones by observing weather phenomena. They observed the shape of clouds and the sunset glow to anticipate them. Tropical cyclones occur in various places where they are named differently as well. In the North Atlantic, central North Pacific, and eastern North Pacific the term hurricane is used. The same type of disturbance in the Northwest Pacific is called a typhoon.
Professor Wagner holds a Ph.D. in remote sensing. He gained his experience at renowned institutions, including academia, space agencies and international organisations. He is the Dean of the Faculty for Mathematics and Geoinformation and cofounder of the Earth Observation Data Centre for Water Resources among other affiliations.
Please describe how your professional (and/or personal) experience relates to space technologies and their applications to water resources management.
I am an expert in hydroinformatics, mainly involved in research projects and research supervision of MSc and PhD students. My research focusses on physically based models for inland waters (rivers and lakes). One of the major fields where modelling is used in water resources is flooding. In order to have adequate representation of floods, most models require large amounts of data, both for model building and model usage.
You are currently a Senior Fellow and Cluster Coordinator: Nature, Climate, and Health at UNU – CRIS, can you elaborate on your role, and how it relates to water?
The world faces big problems like climate change, water shortages, and health issues. At UNU CRIS, our Nature, Climate, and Health Cluster studies how these problems are linked. We see that climate change makes things like water and food scarce, which hurts people's health. Our research shows how climate change affects water, food, and health security.
Egline Tauya has focussed her career on natural resource management, after growing up in a rural area and learning to value such resources from a young age. Her work has been based in Africa and has included the use space technologies to map flood risks and vulnerable areas around the Zambezi and Limpopo River basins. Egline develops Environmental Outlooks as part of her work, which are reports that provide an integrated assessment of the state and trends of key environmental resources, such as freshwater, forest, and wildlife. Egline strongly believes in the integration of indigenous knowledges into water resource management and the crucial, but currently limited use of remote sensing in groundwater monitoring.
Sawaid Abbas, Assistant Professor at the Centre for Geographical Information System, University of the Punjab, Lahore, Pakistan discussed his extensive work in addressing water-related challenges through the nexus between smart sensing and space technologies. His thematic focus spans water scarcity, food security, climate risks, and environmental monitoring with an emphasis on the Asia-Pacific region, including Pakistan and China. Key Sustainable Development Goals (SDGs) guiding his work include SDG2 (Zero Hunger), SDG13 (Climate Action), SDG15 (Life on Land), and SDG11 (Sustainable Cities and Communities).
Abbas's passion for water emerged during his early career at the World Wide Fund for Nature (WWF), where he was involved in Pakistan’s Wetland Program and witnessed the impact of water on associated ecosystems. This sparked his interest in understanding and managing water, forestry, and wildlife resources. He recently studied coastal ecosystems and their responses to climate and anthropogenic stressors in the Asia-Pacific region. The Living Indus – Investing in Ecological Restoration has become a new focus of interest for him, addressing sustainability challenges related to food security, river basin management, and efficient water use in alignment with the UN Decade of Ocean objectives.
Abbas shared his fascination with water, recognizing its complex and essential nature. He is captivated by its beauty in all forms and acknowledges its fundamental importance for life on Earth. This water connection further motivates his commitment to addressing global water challenges and promoting sustainable water use through innovative solutions.
Sawaid Abbas's work, stimulated by both professional commitment and personal fascination, stresses the critical role of space technologies, particularly earth observation, smart sensing nexus, and artificial intelligence in addressing water-related challenges. His research contributes to the development of innovative solutions for sustainable water use, environmental protection, and disaster response, aligning with global goals for a more resilient and water-secure future.
How do you personally and professionally relate to water?
Growing up in Israel, water scarcity was a constant backdrop to my childhood. The arid climate and frequent droughts shaped my relationship with water from an early age. One vivid memory that remains stamped in my mind is the series of TV campaigns highlighting the importance of water conservation. I recall sitting in front of the television, concerned by the urgency conveyed in those campaigns. The images of dry landscapes and the emphasis on every drop of water as precious left a lasting impression.
Rebecca Gustine is currently a PhD student at Washington State University in the Department of Civil and Environmental Engineering studying civil engineering with a focus on water resources. She is also an intern at NASA JPL where she is a member of the ECOSTRESS applied science mission team working with local agencies to inform resource management and conservation efforts. We talked to her about her interdisciplinary research experiences through her undergraduate and graduate school.
Valdilene Siqueira has a diverse background in chemistry and environmental engineering and is currently pursing a master’s degree in Sustainable Territorial Development. Her work and experience has always been closely tied to water management and sanitation. She believes that access to water and ensuring the sustainable management of water resources in a fast-paced changing world are two of the most important challenges for the coming years. Valdilene feels that achieving mutual understanding on how to manage this resource, especially in water-scarce regions, is a real challenge for decision-makers but considers that an intersectoral, integrated and participatory approach is capable of bringing stakeholders together to reconcile their different interests and build collective solutions.
In the interview, Hafsa Aeman discusses her passion for integrating water resource management with space technologies. She uses remote sensing and AI to tackle challenges like seawater intrusion and coastal erosion, focusing on vulnerable coastal ecosystems. By leveraging satellite data, her work provides critical insights for sustainable water management, crucial for communities impacted by climate change.
Ms Aeman highlights the significant role of space technology in water management, especially through remote sensing, which helps monitor precipitation, soil moisture, and groundwater levels. Her proudest achievement is a publication on seawater intrusion, recognized for its innovative use of AI and remote sensing, contributing to Pakistan’s Living Indus initiative.
At the International Water Management Institute (IWMI), Hafsa’s research integrates AI and remote sensing to optimize water and irrigation management systems. She emphasizes the importance of addressing seawater intrusion, which poses threats to agriculture, ecosystems, and global food security.
She also underscores the role of community engagement in sustainable water management through capacity-building workshops for farmers, promoting smarter irrigation practices. She advocates for leadership opportunities for young scientists and believes AI can revolutionize water management by enabling more accurate and efficient data analysis. Rain, symbolizing renewal and sustenance, is her favorite aggregate state of water.
Sarhan Zerouali became fascinated with water at a young age through learning about water scarcity around the world and about traditional methods for locating groundwater. In a space applications course Sahran then learnt about space-based technologies. He is currently working on a research project on how remote sensing and other technologies can help alleviate global challenges arising from land degradation. As an aerospace engineer, Sahran has worked with various modern technologies in his work including nanosatellites, artificial intelligence, and feature extraction algorithms.
Shaima Almeer is a young Bahraini lady that works as a senior space data analyst at the National Space Science Agency. At NSSA she is responsible for acquiring data from satellite images and analyzing them into meaningful information aiming to serve more than 21 governmental entities. Shaima is also committed to publishing scientific research papers, aiming to support and spread the knowledge to others.
In addition, she has recently graduated from a fellowship program at Bahrain’s Prime Minister’s Office. Shaima was selected among more than 1000 individuals to spend a year working as full-time research fellow, benefiting from advanced training in writing skills, research methods and policy analysis. The fellowship forms a core pillar of HRH the CP and PM initiative to improve national skills and support the Kingdom’s growing cadre of young government professionals. Part of the fellowship program is to work as a supervisor at the COVID-19 War Room.
Shaima has obtained her bachelor’s degree in the field of Information and Communication Technology from Bahrain Polytechnic and is currently pursuing her Msc. degree in Management Information System from the University College of Bahrain.
Prior to obtaining her bachelor’s degree, Shaima was titled as the first robotics programmer in the Kingdom of Bahrain and also won the title “Pioneering Women in Technology”. She has recently also won the “Women Innovator of the Year 2023 Award” in New Dehli.
Padmi is currently reading for her Ph.D. focusing on Nature-based Solutions (NbS) for climate change risk reduction and resilience cities. She believes NbS can reduce hydro-meteorological hazards such as floods, droughts, and landslides in the long run. It is a strategy to minimize the gaps in decarbonizing and reducing greenhouse gases and a path to Net-zero cities. NbS, are actions to protect, sustainably manage, and restore natural and modified ecosystems that address societal challenges effectively and adaptively, benefiting people and nature (IUCN & World Bank, 2022). Ecosystem-based adaptation (EbA), ecosystem-based disaster risk reduction (Eco-DRR), ecosystem-based mitigation (EbM), and green infrastructure are some branches under the umbrella of NbS. NbS include conserving forests, mangroves, and wetland ecosystems, halting deforestation, increasing reforestation, climate-smart agriculture, and opening green spaces. According to her, space technology is integral to planning, monitoring, and analysis. Space technology today is so advanced that it can capture and predict changes in the water cycle, climate change variables and so forth. Remote sensing data and satellite-derived information are essential in obtaining accurate data on a specific site anywhere on the Earth's surface. Most recently, she has been involved in projects utilizing urban NbS such as the conservation of Ramsar-Colombo to mitigate urban floods and adapt to climate change. To conduct wetland inventories, space-based data and GIS techniques can be utilized to detect the presence of wetlands and/or water in wetlands. Though there can be some challenges encountered such as limited coverage of specific areas within the wetland, clouds often hiding images, and the low resolution of data making it difficult to differentiate floral species. Unmanned Aerial Vehicles (drones) can provide enhanced accuracy and consistency in measuring wetlands, as well as the presence of water in wetlands, using space technologies. Data and technologies from space contribute to watershed management, sediment measurements and many other environmental aspects.
Victor Hertel is a doctoral researcher specializing in the field of environmental risks and human security. He currently works at the German Aerospace Center (DLR) on the development of (physics-informed) deep learning methods in the context of emergency response and disaster preparedness. With an academic background in aerospace engineering, he previously worked with organizations like Human Rights Watch and the United Nations Office for Outer Space Affairs’ UN-SPIDER program, using geospatial analyses to address environmental and social challenges. His primary area of interest is data-informed decision-making and policy, with a focus on practical and implementation-oriented solutions for humanitarian emergencies caused by climate shocks and conflict.
Webster is a PhD student at the University of Twente’s Faculty of Geoinformation Science and Earth Observation. His PhD thesis is entitled: Observing Zambezi Basin from Space: Satellite based bias correction for hydrological modelling: Webster is also lecturer and researcher at the University of Zimbabwe’s Construction and Civil Engineering Department. He is the coordinator of the regional master’s degree programme in Integrated Water Resources Management, a capacity building programme for the water sector in Southern and Eastern Africa. His research interests are in the areas of GIS and Earth Observation applications in water resources management, sanitation, water quality and disaster management. He is also a consultant who has been seconded as a GIS mentor to many government institutions and developmental partners in Southern Africa. Webster has over 60 publications, numerous regional and international conference papers in areas of spatial and quantitative hydrology, water resources management, quantification of water cycle components and feedbacks between climate, land-uses, water cycles and other societal influences. Webster is the Chief Editor of the Journal of Environmental Management in Zimbabwe (JEMZ).
Prof. Hesham El-Askary works at Chapman University in the Earth Systems Science Data Solutions (ESsDs) lab. Here, he supervises students on the use of satellite earth observations for topics including agriculture, water resources, air quality and climate action, and makes use of Artificial Intelligence (AI) and Machine Learning (ML). Prof. El-Askary is researching natural and anthropogenic pollution’s influence on the environment and is particularly interested in the concept of “glocal” impact—how what’s happening globally in terms of climate affects us locally. He believes that one of the biggest challenges in implementing sustainable water management is the lack of data to monitor progress, and advocates for space technologies to mitigates this shortage.
Dr. Aziza Baubekova's research tackles critical environmental and water-related challenges in water-scarce regions using innovative approaches like remote sensing and machine learning. Her work not only advances scientific knowledge but also offers practical and policy solutions for developing countries. By applying quantifiable methods, her research provides actionable tools for integrated water resources and ecosystem management, addressing issues related to hydrologic conditions and human impact.
Despite earning all her degrees in Europe, Dr. Baubekova maintains a deep connection to Central Asia, focusing her research on the region's unique environmental challenges. As a Postdoctoral Researcher in the Water, Energy, and Environmental Engineering Research Unit at the University of Oulu, she contributes significantly to projects like TU-NEXUS, which aims to develop decision-making tools for transboundary river management in Central Asia. Her PhD, completed with distinction in 2023, covers topics such as hydrologic changes, climate change impacts, and coastal ecosystem threats.
Beyond her academic work, Dr. Baubekova actively fosters partnerships between Finland and Central Asian institutions, supporting knowledge transfer and technology exchange. As Vice Chair of Young Water Professionals Finland, she promotes professional development, knowledge sharing, and networking opportunities for young water experts.
Ayan Santos Fleischmann is a hydrologist with a particular interest in wetlands and large-scale basins, mainly in South America and Africa, and in the context of human impacts on water resources. His main study approaches involve remote sensing techniques and hydrologic-hydrodynamic modeling, as well as interdisciplinary collaborations with other disciplines such as ecology and social sciences. Currently, he is a researcher at the Mamirauá Institute for Sustainable Development (Tefé, Amazonas, Brazil), where he leads the Research Group in Geospatial Analysis of the Amazonian Environment and Territory. He also leads the Conexões Amazônicas initiative for science communication about the Amazon Basin. Ayan holds a PhD degree from UFRGS, with a collaborative period at Université Toulouse III – Paul Sabatier (France). His Ph. D. thesis focused on the hydrology of the South American wetlands. Ayan holds an Environmental Engineering degree from the Universidade Federal do Rio Grande do Sul (UFRGS), with a research stay at the University of East Anglia in the United Kingdom. In this interview, we talked to him about his career path, the work he has been developing in Brazil with wetlands and floods, and his work in the Amazon River basin.
Ruvimbo Samanga, despite her age, has vast experience in the law, space, and water sectors. She is presently involved in a regional study on the integration of GIS and statistical information in Zimbabwe, working towards the promulgation of GIS standards and legislation to support a National Spatial Data Infrastructure (NSDI). Ruvimbo is excited by the merging of sustainable development for water management with space technologies because it is scalable, environmentally friendly, and cost-effective over the long run. Ruvimbo feels strongly that space technologies have a role to play in policy and legal affairs, and also sees potential especially in the use of emerging technologies such as block chain, artificial intelligence (AI) and quantum computing.
Could you describe how your professional and/or personal experience relate to water? Where does your interest in space technology for water come from?
I have a solid understanding of the fundamentals of hydrologic and hydraulic engineering, which is relevant to water. I studied many courses in my undergraduate and postgraduate degrees where I learned how runoff in a watershed is generated from meteorological parameters including rainfall, evapotranspiration and infiltration. I also applied my theoretical knowledge to various projects.
Claudia Ruz Vargas is a civil engineer, graduated from the University of Santiago, Chile, with an international master’s degree in Groundwater and Global change. Her master thesis focused on groundwater modelling for recharge and saline intrusion risk assessment under climate change scenarios, in Cape Verde. Claudia has six years of work experience as a project engineer and researcher. She is currently a researcher at the International Groundwater Resources Assessment Centre (IGRAC), where she is involved in projects of high impact on the groundwater sector. In this interview, we talked to her about her career path, and how she has contributed to an improved and more sustainable management of groundwater resources, at a regional and global levels.
In this interview, we discuss how time-series of satellite data can be used to monitor the environmental, and more specifically the water domain, using the data cube technology.
Malek Abdulfailat has over 10 years of experience mapping and coordinating water-related projects in Palestine, Israel, and Jordon. He is currently leading a new consultation firm working on three projects: Green businesses and Water, EcoTourism and Water, and Solid waste management through women leaders. He has experience using several different space based technologies including spatial analysis and water elevation mapping. He’s realises the importance of space based technologies and believes that one factor needed to unlock their true potential is by increasing access to such tools and by better communicating their potential to policy makers.
The following interview with Dr. Sherine Ahmed El Baradei is focusing on water quality and its relation to space technology. Water is the essence of life. Thus preservation of water quality is of a big concern to human health and to fauna and flora in water bodies. The interview explains what is water quality and what are water quality parameters of water bodies. Furthermore, the importance of using space technologies and applications in contributing to water quality monitoring and determination of hydraulic and hydrologic conditions is thoroughly discussed. For example, temporal resolution of satellites and their role in obtaining accurate imaging and data is clarified and the satellites concerned with water quality monitoring are pointed out. Considering the important role of groundwater in arid regions, the use of GRACE Mission data in Egypt is mentioned. Moreover, key influences on water quality in Egypt are discussed and the relation of water quality to water scarcity in the country and ways to preserve water quality is being discussed. Furthermore, the potential of space-based monitoring used to address water issues from hydrological to water resources issues in the country or region is pointed out. The challenges of the use of space technology for hydrology and water-related topics in the MENA region is also discussed. Light is shed on the project done by NASA to recycle astronauts’ waste into energy and power. Sustainability is of a great importance to or communities, and thus it is discussed how sustainable it is to build cities in the desert, or to divert water to where people are instead of moving people to existing water sources. Finally, a discussion about ways we can employ to improve awareness and capacity building on the use of space technology for water and challenges in this field are discussed.
Marie-Francoise Voidrot studied meteorology and therefore knows the importance of satellite technology in predicting and monitoring weather patterns. She worked specifically on the integration of information needed by forecaster’s specialized decision tool using WMO standards for many years. Marie-Francoise is now the European Director of the innovation program at the Open Geospatial Consortium (OGC). She finds her work fascinating, as it is useful for the sustainability of humankind and for business development and any improvement is very quickly adopted and implemented.
How do you personally and professionally relate to water and/or space technologies?
Water and space technologies are deeply intertwined with my research focus and professional journey. My work primarily revolves around studying the impacts of climate change and human activities on ecosystems, particularly in mountainous regions like the Alps. Water is a crucial component in this context, as it plays a significant role in both vegetation dynamics and ecosystem health.
Describe experience relating to water and space technologies
I grew up in a country (France) where water is freely available. The drought in 2003 was considered a one-time event. I had no single lesson on climate change at school. Despite this background, I was raised aware of the links between social and environmental inequality on a global scale.
Margherita is an interdisciplinary Earth scientist and drone pilot with a background in geologic and environmental sciences. She has international experience working in fields such as Earth Observation (EO), remote sensing, drones & geospatial data analysis applied to the environmental and humanitarian sectors, sustainability and climate change. Margherita is passionate about natural and climate-related technologies that can be used to develop sustainable and long-lasting solutions. She is working for a more inclusive world (Women in Geospatial+), without any sort of geographical or social barriers.
Keywords: Science communication, Climate Change, STEM, inclusivity, sustainability, nature, hydrosphere, hydrology, water risks, Earth Observation (EO), satellite data, flood modeling, vulnerability, resilience, lifelong learning
Region/Country mentioned: Temperate climates, Arid climates, Luxembourg, Niger
Relevant SDG targets: 1, 4, 6, 9, 11, 13, 17
How do your professional career and/or your personal experience relate to space technologies and water?
My interest in water is deeply rooted in my personal life. I grew up on an island in the Philippines where a lot of people depend on water as a source of livelihood. From fishing in the open sea to fish breeding, water has always been a source of income at home. Aside from this, the small community where I grew up struggled with access to running water.
Mina Konaka works at the Japan Aerospace Exploration Agency (JAXA) as a satellite engineer and is currently working on the satellite ALOS-4, which can detect changes in groundwater on land. She attended the International Space University, participating in the project AWARE (Adapting to Water and Air Realities on Earth), in which participants aimed to provide solutions for flood and air quality risks due to climate change, using earth observation data and ground-based sensors. Mina feels strongly about the need to talk more globally about water management solutions, rather than on an individual country basis. Mina also hopes that in the future there will be more female engineers who pursue dreams of space, and that gender balance is no longer an issue.
Joshua is a Master’s student in Tropical Hydrogeology and Environmental Engineering at Technische Universität of Darmstadt. His interest is focused on hydrogeological processes, groundwater modelling, application of remote sensing and GIS in environmental studies, water management and climate change. He also works as a graduate Intern at AgriWatch BV, a company that applies geospatial solutions for precision Agriculture. As a graduate intern, he applies his interdisciplinary knowledge in developing smart-farming solutions using space-based technologies to farmers in the Twente region of the Netherlands. He deploys satellite imagery, field studies and machine learning algorithms to predict the effect of climate change on arable crops. He also utilizes precipitation data to predict rainfall events to aid farmers in determining planting and harvesting periods.
Joshua earned a bachelor’s degree in Geological Sciences, his bachelor’s thesis research aimed at carrying out paleoenvironmental reconstruction using paleocurrent indicators of water flow and direction, and application of ArcGIS to produce maps. Currently, he is working on his master’s thesis with emphasis on the impact of the ancient climate on the paleoenvironment particularly on vegetation, where he tries to research plants response to long-term greenhouse periods and short-term warming events on various timescales throughout Earth's history.
His research interests revolve around the application of space technologies in providing solutions and tackling climate change.
Water is one of the most important substances on Earth and covers 70% of the planet. However, freshwater makes up a very small fraction with 97% being saline and ocean-based. While the amount of freshwater on the planet has remained fairly constant over time, the world’s population has exploded, meaning that freshwater is threatened by significant forces, like overdevelopment, polluted runoff, and global warming.
Are you an indigenous women or in touch with indigenous communities. Don't miss this chance to make the voices of indigenous women heard. We would like to contribute to closing the digital divide, as well as to raise the voices of indigenous women on their views realated to water and the environment.
Spread the word about this opportunity so we can reach as many Indigenous women as possible.
San José, Costa Rica, 7-10 May 2024 (with a possibility of online attendance)
Hosted and supported by the Inter-American Institute for Cooperation on Agriculture (IICA)
Co-sponsored by the Prince Sultan Bin Abdulaziz International Prize for Water (PSIPW)
Venue: Inter-American Institute for Cooperation on Agriculture Headquarters, San José, Costa Rica
Valdilene Siqueira has a diverse background in chemistry and environmental engineering and is currently pursing a master’s degree in Sustainable Territorial Development. Her work and experience has always been closely tied to water management and sanitation. She believes that access to water and ensuring the sustainable management of water resources in a fast-paced changing world are two of the most important challenges for the coming years. Valdilene feels that achieving mutual understanding on how to manage this resource, especially in water-scarce regions, is a real challenge for decision-makers but considers that an intersectoral, integrated and participatory approach is capable of bringing stakeholders together to reconcile their different interests and build collective solutions.
In the interview, Hafsa Aeman discusses her passion for integrating water resource management with space technologies. She uses remote sensing and AI to tackle challenges like seawater intrusion and coastal erosion, focusing on vulnerable coastal ecosystems. By leveraging satellite data, her work provides critical insights for sustainable water management, crucial for communities impacted by climate change.
Ms Aeman highlights the significant role of space technology in water management, especially through remote sensing, which helps monitor precipitation, soil moisture, and groundwater levels. Her proudest achievement is a publication on seawater intrusion, recognized for its innovative use of AI and remote sensing, contributing to Pakistan’s Living Indus initiative.
At the International Water Management Institute (IWMI), Hafsa’s research integrates AI and remote sensing to optimize water and irrigation management systems. She emphasizes the importance of addressing seawater intrusion, which poses threats to agriculture, ecosystems, and global food security.
She also underscores the role of community engagement in sustainable water management through capacity-building workshops for farmers, promoting smarter irrigation practices. She advocates for leadership opportunities for young scientists and believes AI can revolutionize water management by enabling more accurate and efficient data analysis. Rain, symbolizing renewal and sustenance, is her favorite aggregate state of water.
Sarhan Zerouali became fascinated with water at a young age through learning about water scarcity around the world and about traditional methods for locating groundwater. In a space applications course Sahran then learnt about space-based technologies. He is currently working on a research project on how remote sensing and other technologies can help alleviate global challenges arising from land degradation. As an aerospace engineer, Sahran has worked with various modern technologies in his work including nanosatellites, artificial intelligence, and feature extraction algorithms.
Shaima Almeer is a young Bahraini lady that works as a senior space data analyst at the National Space Science Agency. At NSSA she is responsible for acquiring data from satellite images and analyzing them into meaningful information aiming to serve more than 21 governmental entities. Shaima is also committed to publishing scientific research papers, aiming to support and spread the knowledge to others.
In addition, she has recently graduated from a fellowship program at Bahrain’s Prime Minister’s Office. Shaima was selected among more than 1000 individuals to spend a year working as full-time research fellow, benefiting from advanced training in writing skills, research methods and policy analysis. The fellowship forms a core pillar of HRH the CP and PM initiative to improve national skills and support the Kingdom’s growing cadre of young government professionals. Part of the fellowship program is to work as a supervisor at the COVID-19 War Room.
Shaima has obtained her bachelor’s degree in the field of Information and Communication Technology from Bahrain Polytechnic and is currently pursuing her Msc. degree in Management Information System from the University College of Bahrain.
Prior to obtaining her bachelor’s degree, Shaima was titled as the first robotics programmer in the Kingdom of Bahrain and also won the title “Pioneering Women in Technology”. She has recently also won the “Women Innovator of the Year 2023 Award” in New Dehli.
Padmi is currently reading for her Ph.D. focusing on Nature-based Solutions (NbS) for climate change risk reduction and resilience cities. She believes NbS can reduce hydro-meteorological hazards such as floods, droughts, and landslides in the long run. It is a strategy to minimize the gaps in decarbonizing and reducing greenhouse gases and a path to Net-zero cities. NbS, are actions to protect, sustainably manage, and restore natural and modified ecosystems that address societal challenges effectively and adaptively, benefiting people and nature (IUCN & World Bank, 2022). Ecosystem-based adaptation (EbA), ecosystem-based disaster risk reduction (Eco-DRR), ecosystem-based mitigation (EbM), and green infrastructure are some branches under the umbrella of NbS. NbS include conserving forests, mangroves, and wetland ecosystems, halting deforestation, increasing reforestation, climate-smart agriculture, and opening green spaces. According to her, space technology is integral to planning, monitoring, and analysis. Space technology today is so advanced that it can capture and predict changes in the water cycle, climate change variables and so forth. Remote sensing data and satellite-derived information are essential in obtaining accurate data on a specific site anywhere on the Earth's surface. Most recently, she has been involved in projects utilizing urban NbS such as the conservation of Ramsar-Colombo to mitigate urban floods and adapt to climate change. To conduct wetland inventories, space-based data and GIS techniques can be utilized to detect the presence of wetlands and/or water in wetlands. Though there can be some challenges encountered such as limited coverage of specific areas within the wetland, clouds often hiding images, and the low resolution of data making it difficult to differentiate floral species. Unmanned Aerial Vehicles (drones) can provide enhanced accuracy and consistency in measuring wetlands, as well as the presence of water in wetlands, using space technologies. Data and technologies from space contribute to watershed management, sediment measurements and many other environmental aspects.
Victor Hertel is a doctoral researcher specializing in the field of environmental risks and human security. He currently works at the German Aerospace Center (DLR) on the development of (physics-informed) deep learning methods in the context of emergency response and disaster preparedness. With an academic background in aerospace engineering, he previously worked with organizations like Human Rights Watch and the United Nations Office for Outer Space Affairs’ UN-SPIDER program, using geospatial analyses to address environmental and social challenges. His primary area of interest is data-informed decision-making and policy, with a focus on practical and implementation-oriented solutions for humanitarian emergencies caused by climate shocks and conflict.
Webster is a PhD student at the University of Twente’s Faculty of Geoinformation Science and Earth Observation. His PhD thesis is entitled: Observing Zambezi Basin from Space: Satellite based bias correction for hydrological modelling: Webster is also lecturer and researcher at the University of Zimbabwe’s Construction and Civil Engineering Department. He is the coordinator of the regional master’s degree programme in Integrated Water Resources Management, a capacity building programme for the water sector in Southern and Eastern Africa. His research interests are in the areas of GIS and Earth Observation applications in water resources management, sanitation, water quality and disaster management. He is also a consultant who has been seconded as a GIS mentor to many government institutions and developmental partners in Southern Africa. Webster has over 60 publications, numerous regional and international conference papers in areas of spatial and quantitative hydrology, water resources management, quantification of water cycle components and feedbacks between climate, land-uses, water cycles and other societal influences. Webster is the Chief Editor of the Journal of Environmental Management in Zimbabwe (JEMZ).
Dr. Aziza Baubekova's research tackles critical environmental and water-related challenges in water-scarce regions using innovative approaches like remote sensing and machine learning. Her work not only advances scientific knowledge but also offers practical and policy solutions for developing countries. By applying quantifiable methods, her research provides actionable tools for integrated water resources and ecosystem management, addressing issues related to hydrologic conditions and human impact.
Despite earning all her degrees in Europe, Dr. Baubekova maintains a deep connection to Central Asia, focusing her research on the region's unique environmental challenges. As a Postdoctoral Researcher in the Water, Energy, and Environmental Engineering Research Unit at the University of Oulu, she contributes significantly to projects like TU-NEXUS, which aims to develop decision-making tools for transboundary river management in Central Asia. Her PhD, completed with distinction in 2023, covers topics such as hydrologic changes, climate change impacts, and coastal ecosystem threats.
Beyond her academic work, Dr. Baubekova actively fosters partnerships between Finland and Central Asian institutions, supporting knowledge transfer and technology exchange. As Vice Chair of Young Water Professionals Finland, she promotes professional development, knowledge sharing, and networking opportunities for young water experts.
Ayan Santos Fleischmann is a hydrologist with a particular interest in wetlands and large-scale basins, mainly in South America and Africa, and in the context of human impacts on water resources. His main study approaches involve remote sensing techniques and hydrologic-hydrodynamic modeling, as well as interdisciplinary collaborations with other disciplines such as ecology and social sciences. Currently, he is a researcher at the Mamirauá Institute for Sustainable Development (Tefé, Amazonas, Brazil), where he leads the Research Group in Geospatial Analysis of the Amazonian Environment and Territory. He also leads the Conexões Amazônicas initiative for science communication about the Amazon Basin. Ayan holds a PhD degree from UFRGS, with a collaborative period at Université Toulouse III – Paul Sabatier (France). His Ph. D. thesis focused on the hydrology of the South American wetlands. Ayan holds an Environmental Engineering degree from the Universidade Federal do Rio Grande do Sul (UFRGS), with a research stay at the University of East Anglia in the United Kingdom. In this interview, we talked to him about his career path, the work he has been developing in Brazil with wetlands and floods, and his work in the Amazon River basin.
Ruvimbo Samanga, despite her age, has vast experience in the law, space, and water sectors. She is presently involved in a regional study on the integration of GIS and statistical information in Zimbabwe, working towards the promulgation of GIS standards and legislation to support a National Spatial Data Infrastructure (NSDI). Ruvimbo is excited by the merging of sustainable development for water management with space technologies because it is scalable, environmentally friendly, and cost-effective over the long run. Ruvimbo feels strongly that space technologies have a role to play in policy and legal affairs, and also sees potential especially in the use of emerging technologies such as block chain, artificial intelligence (AI) and quantum computing.
Could you describe how your professional and/or personal experience relate to water? Where does your interest in space technology for water come from?
I have a solid understanding of the fundamentals of hydrologic and hydraulic engineering, which is relevant to water. I studied many courses in my undergraduate and postgraduate degrees where I learned how runoff in a watershed is generated from meteorological parameters including rainfall, evapotranspiration and infiltration. I also applied my theoretical knowledge to various projects.
Claudia Ruz Vargas is a civil engineer, graduated from the University of Santiago, Chile, with an international master’s degree in Groundwater and Global change. Her master thesis focused on groundwater modelling for recharge and saline intrusion risk assessment under climate change scenarios, in Cape Verde. Claudia has six years of work experience as a project engineer and researcher. She is currently a researcher at the International Groundwater Resources Assessment Centre (IGRAC), where she is involved in projects of high impact on the groundwater sector. In this interview, we talked to her about her career path, and how she has contributed to an improved and more sustainable management of groundwater resources, at a regional and global levels.
Malek Abdulfailat has over 10 years of experience mapping and coordinating water-related projects in Palestine, Israel, and Jordon. He is currently leading a new consultation firm working on three projects: Green businesses and Water, EcoTourism and Water, and Solid waste management through women leaders. He has experience using several different space based technologies including spatial analysis and water elevation mapping. He’s realises the importance of space based technologies and believes that one factor needed to unlock their true potential is by increasing access to such tools and by better communicating their potential to policy makers.
How do you personally and professionally relate to water and/or space technologies?
Water and space technologies are deeply intertwined with my research focus and professional journey. My work primarily revolves around studying the impacts of climate change and human activities on ecosystems, particularly in mountainous regions like the Alps. Water is a crucial component in this context, as it plays a significant role in both vegetation dynamics and ecosystem health.
Describe experience relating to water and space technologies
I grew up in a country (France) where water is freely available. The drought in 2003 was considered a one-time event. I had no single lesson on climate change at school. Despite this background, I was raised aware of the links between social and environmental inequality on a global scale.
Margherita is an interdisciplinary Earth scientist and drone pilot with a background in geologic and environmental sciences. She has international experience working in fields such as Earth Observation (EO), remote sensing, drones & geospatial data analysis applied to the environmental and humanitarian sectors, sustainability and climate change. Margherita is passionate about natural and climate-related technologies that can be used to develop sustainable and long-lasting solutions. She is working for a more inclusive world (Women in Geospatial+), without any sort of geographical or social barriers.
Keywords: Science communication, Climate Change, STEM, inclusivity, sustainability, nature, hydrosphere, hydrology, water risks, Earth Observation (EO), satellite data, flood modeling, vulnerability, resilience, lifelong learning
Region/Country mentioned: Temperate climates, Arid climates, Luxembourg, Niger
Relevant SDG targets: 1, 4, 6, 9, 11, 13, 17
How do your professional career and/or your personal experience relate to space technologies and water?
My interest in water is deeply rooted in my personal life. I grew up on an island in the Philippines where a lot of people depend on water as a source of livelihood. From fishing in the open sea to fish breeding, water has always been a source of income at home. Aside from this, the small community where I grew up struggled with access to running water.
Mina Konaka works at the Japan Aerospace Exploration Agency (JAXA) as a satellite engineer and is currently working on the satellite ALOS-4, which can detect changes in groundwater on land. She attended the International Space University, participating in the project AWARE (Adapting to Water and Air Realities on Earth), in which participants aimed to provide solutions for flood and air quality risks due to climate change, using earth observation data and ground-based sensors. Mina feels strongly about the need to talk more globally about water management solutions, rather than on an individual country basis. Mina also hopes that in the future there will be more female engineers who pursue dreams of space, and that gender balance is no longer an issue.
Joshua is a Master’s student in Tropical Hydrogeology and Environmental Engineering at Technische Universität of Darmstadt. His interest is focused on hydrogeological processes, groundwater modelling, application of remote sensing and GIS in environmental studies, water management and climate change. He also works as a graduate Intern at AgriWatch BV, a company that applies geospatial solutions for precision Agriculture. As a graduate intern, he applies his interdisciplinary knowledge in developing smart-farming solutions using space-based technologies to farmers in the Twente region of the Netherlands. He deploys satellite imagery, field studies and machine learning algorithms to predict the effect of climate change on arable crops. He also utilizes precipitation data to predict rainfall events to aid farmers in determining planting and harvesting periods.
Joshua earned a bachelor’s degree in Geological Sciences, his bachelor’s thesis research aimed at carrying out paleoenvironmental reconstruction using paleocurrent indicators of water flow and direction, and application of ArcGIS to produce maps. Currently, he is working on his master’s thesis with emphasis on the impact of the ancient climate on the paleoenvironment particularly on vegetation, where he tries to research plants response to long-term greenhouse periods and short-term warming events on various timescales throughout Earth's history.
His research interests revolve around the application of space technologies in providing solutions and tackling climate change.
Rebecca Gustine is currently a PhD student at Washington State University in the Department of Civil and Environmental Engineering studying civil engineering with a focus on water resources. She is also an intern at NASA JPL where she is a member of the ECOSTRESS applied science mission team working with local agencies to inform resource management and conservation efforts. We talked to her about her interdisciplinary research experiences through her undergraduate and graduate school.
The 2ndSpace4Water Stakeholder Meeting was hosted by the United Nations Office for Outer Space Affairswith its partner, the Prince Sultan Bin Abdulaziz InternationalPrizeforWateronline 11–12
This event is restricted to Space4Water stakeholders, featured professionals, young professionals and representatives of Indigenous communities featured on the portal.
Registration for speakers submitting technical presentations closes on 15 April 2023.
Registration for all other participants closes on 30 April 2023.
The Committee on the Peaceful Uses of Outer Space in its sixty-fourth session, which took place form 25 August-3 September 2021 in Vienna, adopted the below on its agenda item "Space and water":
The Committee considered the agenda item entitled “Space and water”, in accordance with General Assembly resolution 75/92.
This event is restricted to Space4Water stakeholders, featured professionals, young professionals and representatives of Indigenous communities featured on the portal.
The Office for Outer Space Affairs and the Prince Sultan Bin Abdulaziz International Prize for Water organized the third Space4Water stakeholder meeting hosted in Vienna on 24 and 25 October 2023 in a hybrid format.
The present report describes the objectives of the meeting and includes details of attendance and a summary of the presentations, discussions and interactive sessions, as well as the conclusions.
The United Nations Office for Outer Space Affairs (UNOOSA) and the Government of Ghana are jointly organizing a Conference with the support of the Prince Sultan Bin Abdulaziz International Prize for Water (PSIPW) to promote the use of space technology in water management to the benefit of developing countries.
The Conference will be held in Accra, Ghana, from 10- 13 May 2022, hosted by the University of Energy and Natural Resources on behalf of the Government of Ghana.
Space4Water stakeholders, featured young professionals and professionals, join us in Vienna at the 1st Space4Water Stakeholder Meeting.
Dates and location
The workshop will take place on 27-28 October 2022 at the Vienna International Centre, with an opportunity to host it online, should COVID prevent travels in October.
Registration
To be considered for participation Space4Water stakeholders and featured professionals can register here.
Floods and landslides are the first and fourth most frequent disasters around the world (Petley, 2012). There are several examples of downstream flooding caused by massive mudslides where rapid mapping is an indispensable tool for supporting disaster management activities by civil protection authorities.
During the challenging times of the COVID-19 outbreak, MOOCs are an effective way of reaching a large number of participants to share knowledge. The United Nations Office for Outer Space Affairs and the Centre for Space Science and Technology Education for Asia and the Pacific (Affiliated to the United Nations) launched a Massive Open Online Course (MOOC) on “Geospatial Applications for Disaster Risk Management” on 13th October, 2020 the International Day for Disaster Risk Reduction.
This online training introduces participants to the data and applications of the Global Precipitation Measurement (GPM) mission. GPM is an international satellite mission that provides next-generation observations of rain and snow worldwide every three hours.
This learning platform helps users understand the significance of Earth observations, explore Digital Earth Africa datasets through an interactive map, and get started on the basics of python coding for spatial analysis.
Digital Earth Africa makes Earth observation (EO) data readily available, delivering decision-ready products to the African continent. Data generated by Digital Earth Africa will provide valuable insights for better decision-making across many areas, including resource management, food security and urbanisation.
Hydrologic modeling is useful for flood, drought, and water resources management. The Variable Infiltration Capacity (VIC) Model uses inputs to better understand hydrological processes in near real-time. Many of the inputs are available from NASA remote sensing and Earth system models, allowing the model to provide soil moisture, evapotranspiration, and runoff as outputs. Together with precipitation data, these outputs provide quantitative assessment of a regional water budget.
Prolonged drought can result in economic, environmental, and health-related impacts. In these training webinars, participants will learn how to monitor drought conditions and assess impacts on the ecosystem using precipitation, soil moisture, and vegetation data. The training will provide an overview of drought classification, as well as an introduction to web-based tools for drought monitoring and visualization.
Objective:
By the end of the training, participants will be able to:
Storm surges and tidal waves are global phenomena that considerably affect human populations in coastal and island regions. According to the Guide to Storm Surge Forecasting published by the World Meteorological Organization in 2011, storm surges can be defined as “oscillations of the water level in a coastal or inland body of water in the time range of a few minutes to a few days, resulting from forcing from atmospheric weather systems. According to this definition, the so-called wind waves, which have durations on the order of several seconds, are excluded”.
Remote sensing technologies can support all stages of the disaster management cycle. In the prevention and preparedness phases, they often find their application in risk assessments, scenario modelling and early warning. This UN-SPIDER Recommended Practice explains how remote sensing data about recurring floods, information about infrastructure and socio-economic data can be integrated using free and open source software to support prevention and preparedness efforts.
Mapping the extent of a natural hazard (e.g., assessing areas with a high risk) or disaster is a first step in disaster risk management and emergency response. Subsequently, exposure mapping enables the estimation of the impact of hazards or disasters, for example, regarding the number of affected inhabitants or infrastructure. The following practice shows the use of Quantum GIS to analyze a disaster extent map in combination with auxiliary data such as population or land cover data.
Flood hazard assessments are critical to identifying areas at risk and taking relevant preparation and mitigation measures to address the hazard. Using the HEC-RAS 2D model for preparing flood hazard maps, this Recommended Practice explains how to identify flood-prone areas and exposed infrastructure. Through its focus on the prevention and mitigation stages of the disaster management cycle, it complements the Recommended Practice on Flood Mapping and Damage Assessment with Sentinel-2, also developed by SUPARCO.
This workshop has brought together an international expert group of remote sensing (RS) specialists, water resources experts and water quantity modelers. This workshop has focused on:
Water-ForCE recognises that it is essential to undertake the next phase of research and innovation in Earth Observation in partnership with industry and policy sectors, to design products which can effectively address our immediate environmental and climate challenges.
The AfriAlliance project aims to better prepare Africa for future climate change challenges by having African and European stakeholders work together in the areas of water innovation, research, policy, and capacity development. Rather than creating new networks, the 16 EU and African partners in this project are consolidating existing ones, consisting of scientists, decision makers, practitioners, citizens, and other key stakeholders, into an effective, problem-focused knowledge sharing mechanism.
This learning platform helps users understand the significance of Earth observations, explore Digital Earth Africa datasets through an interactive map, and get started on the basics of python coding for spatial analysis.
Digital Earth Africa makes Earth observation (EO) data readily available, delivering decision-ready products to the African continent. Data generated by Digital Earth Africa will provide valuable insights for better decision-making across many areas, including resource management, food security and urbanisation.
Due to climate change, population growth, increasing urbanization etc., many lakes, rivers, wetlands and coastal basins globally are becoming more stressed from pollution, depleting water resources, global warming, increased floods and droughts, and increasing ecological and biological disruptions.
register here until 21 August 2022 - if you would like to be considered for funding
In many places around the world women are responsible for water collection, a responsibility that globally takes them 200 million hours annually. It often leaves them with little to no time for school, work or to spend time with their family. Furthermore, indigenous communities' cultural heritage and knowledge about natural resources, including water, urgently needs to be considered and protected.
The American Meteorological Society Annual Meeting is the world’s largest yearly gathering for the weather, water, and climate community. It brings together great minds from a diverse set of scientific disciplines – helping attendees make career-long professional contact and life-long friends while learning from the very top people in the atmospheric sciences.
Currently, WHOS makes available three data portals allowing users to easily leverage common WHOS functionalities such as data discovery and data access, on the web by means of common web browsers. For more information on WHOS data and available tools, please refer to the Section WHOS web services and supported tools.
WHOS-Global Portal provides all hydrometeorological data shared through WHOS. WHOS-Global Portal is implemented using the Water Data Explorer application.
Decision-makers are faced with the constant challenge of maintaining access to and understanding new technologies and data, as information and communication technologies (ICTs) are constantly evolving and as more and more data is becoming available. Despite continually improving technologies, informed decision-making is being hindered by inadequate attention to enabling conditions, e.g. a lack of in-service education and professional training for decision-makers.
e-shape is a unique initiative that brings together decades of public investment in Earth Observation and in cloud capabilities into services for the decision-makers, the citizens, the industry and the researchers. It allows Europe to position itself as global force in Earth observation through leveraging Copernicus, making use of existing European capacities and improving user uptake of the data from GEO assets. EuroGEO, as Europe's contribution to the Global Earth Observation System of Systems (GEOSS), aims at bringing together Earth Observation resources in Europe.
The AfriAlliance project aims to better prepare Africa for future climate change challenges by having African and European stakeholders work together in the areas of water innovation, research, policy, and capacity development. Rather than creating new networks, the 16 EU and African partners in this project are consolidating existing ones, consisting of scientists, decision makers, practitioners, citizens, and other key stakeholders, into an effective, problem-focused knowledge sharing mechanism.
The Mekong Dam Monitor is an online platform which uses remote sensing, satellite imagery, and GIS analysis to provide near-real time reporting and data downloads across numerous previously unreported indicators in the Mekong Basin. The platform is freely available for public use on the Mekong Water Data Initiative website and all research inputs are public-access resources.
River and floodplain landscapes are constantly undergoing change due to natural and manmade processes putting pressure on fluvial systems, such as reservoirs, intensive agriculture, high-impact repetitive droughts and floods and the overall effects of climate change. All these bring about considerable changes, some of which irreversibly degrade ecosystem services, local economies and impact lives, particularly in sensitive transitional zones such as the Sahel region in Africa and its Niger River Basin (NRB).
In tandem with the monumental increase in geo-data availability from remote sensors, field sensors and various publicly available environmental datasets, state-of-the-art geoinformatics algorithms have evolved to harness earth science data as never before. In the field of computational hydrology, these processes have yielded global information in fine detail, and of exceptional precision.
The emerging demand of GIS and Space Applications for Climate Change studies for the socio-economic development of Pakistan along with Government of Pakistan Vision 2025, Space Vision 2047 of National Space Agency of Pakistan, and achievement of UN Sustainable Development Goals (SDGs) impelled the Higher Education Commission of Pakistan (HEC) to establish Remote Sensing, GIS and Climatic Research Lab (RSGCRL) at University of the Punjab, Lahore, Pakistan.
The Energy, Water, & Sustainability Program at the Stimson Center addresses important and timely policy issues and technical opportunities concerning energy, water, and sustainable development in the Global South from a multidisciplinary perspective.
Our work on transboundary river basins identifies pathways towards enhancing water security and optimizing tradeoffs between water, energy, and sustainable development options in the Mekong, Ganges-Brahmaputra, Indus, Aral Sea and Euphrates-Tigris river basins.
The United Nations University Institute on Comparative Regional Integration Studies (UNU-CRIS) is a research and training institute of the United Nations University. UNU is a global network of institutes and programs engaged in research and capacity development to support the universal goals of the UN. It brings together leading scholars from around the world with a view to generate strong and innovative knowledge on how to tackle pressing global problems. UNU-CRIS focuses on the study of processes of global cooperation and regional integration and their implications.
The CHMI is a central state institute of the Czech Republic with long-term extensive expertise and competence in weather forecasting, meteorology, climatology (including climate change research), air quality (monitoring and research of pollution in the ground layer of the atmosphere), hydrology (drought and flood forecasting, evaluation and research) and water quality.
The Geohazards Risk Mapping Initiative is an initiative that deploys volunteer youths, who are skilled at using Geographic Information Systems and satellite imagery analysis to create flood susceptibility and post-disaster maps in Nigeria.
Egyptian Space Agency is a Governmental Organization that's aiming at acquiring Space Technology and Satellite Launching capabilities towards the accomplishment of The National Sustainable Development Strategy "Egypt-SDS 2030" objectives.
ISME-HYDRO is a platform that helps monitor water resources of dams, thus enabling water resources managers to better execute their duties. It employs linked data infrastructure integrating in-situ measurements, satellite data, GIS data, domain knowledge, deep learning, and provides capabilities of forecasting of water volumes, of alerting for hazardous situations, of interaction with the data through four kinds of search and GIS interactivity. The platform is easily extendable and customizable.
Aqua Monitor shows how the Earth's surface water has changed during the last 30 years. It uses freely available satellite data and Google Earth Engine, a platform for the planetary-scale scientific analysis of geospatial datasets.
The AfriAlliance project aims to better prepare Africa for future climate change challenges by having African and European stakeholders work together in the areas of water innovation, research, policy, and capacity development.
A need to monitor precipitation extremes from space is widely recognized, especially for regions where ground-based observations are limited or unavailable. The Japan Aerospace Exploration Agency (JAXA) has developed the Global Satellite Mapping of Precipitation (GSMaP) in the Global Precipitation Measurement (GPM) mission. The JAXA participated in the Space-based Weather and Climate Extremes Monitoring (SWCEM) of the World Meteorological Organization (WMO) by providing the GSMaP Near-real-time Rainfall Product.
Aqua Monitor shows how the Earth's surface water has changed during the last 30 years. It uses freely available satellite data and Google Earth Engine, a platform for the planetary-scale scientific analysis of geospatial datasets.
Pakistan and other regions facing alternation of droughts and floods (as described in this challenge) are usually arid and semi-arid that are mainly dependent on rain-fed agriculture and are facing water scarcity issues, rainwater harvesting is critically important for these areas.
Outline steps for solution
For determining optimum sites for rainwater harvesting and the potential of rainwater harvesting structures, data on land cover/land use, elevation and topography, geo-chemical formation of soils, stream runoff, and various hydro-meteorological variables are required. High-quality data on land cover/land use, elevation, stream identification, water potential of individual watersheds, and slope with fine spatial resolution can be derived from space-based satellite imagery. Although stream runoff and hydro-meteorological variable statistics with sufficient accuracy can only be obtained through ground-based in-situ sensors, these measurements also need space-based location services to make them input in the spatial analysis along with the satellite-derived products.
In many cases, however, satellite remote sensing represents a critical source of information, especially in regions with limited sensor networks and where information on hydrologic conditions is inaccessible. Remote sensing and geographical information technologies can play a compelling role in addressing major challenges since spatial patterns of aridity, climatic uncertainty or rapid climatic variability are not vividly understood or considered by local farmers or municipal authorities while planning for agriculture or domestic water use. Robust modeling is possible when space technologies are applied to identify suitable locations and harvesting potentials for ponds and pans, check dams, terracing, percolation tanks, and Nala-bunds; with a very small amount of time, effort, and overhead assessment cost.
All these datasets are available as open-source datasets, which are used to derive parameters such as slope elevation, drainage density, annual rainfall, land use/land cover, curve number, and distance from streams. Further, a model that suggests the suitability of sites for rainwater harvesting will be developed.
2. Modeling
The model includes four fundamental parameters that are readily accessible globally (DEM, soil, rainfall and satellite data, Fig.1). It addresses the simplicity of running the model but highlights the longer process involved in calculating drainage density and suggests its development as an open-source tool. Similarly, it mentions the complexity of the SCS-CN method and proposes its development as a single-click tool. The need for developing reclassification tools for influencing factors in open-source GIS software is also emphasized. The presentation contrasts the affordability and accessibility of ArcGIS with open-source alternatives like QGIS for tasks such as slope calculation. It acknowledges the availability of tools for slope calculation but emphasizes the lack of readily available tools for drainage density, indicating a gap in open-source resources.
Rainwater harvesting suitability model development
To develop the model the datasets are run in ArcGIS. Slope, elevation profile, NDVI, NDWI, and distance from stream datasets are run by a single step. However, drainage density, annual rainfall, curve number, and the LULC data need to be run by various complicated steps.
Drainage density
After calculating the slope and elevation data the drainage density needs to be developed. To calculate this there is a multi-step process (10 steps) involved. This calculation includes stream generation, stream links, grid indexing, clipping, the intersection between stream links and clipped grid index, dissolution, attribute assignment, conversion of polygon features into points features, and finally interpolation. This currently requires expertise to navigate.
Annual rainfall
NetCDF format data for annual rainfall needs to be converted into geographical raster layers for implementation in a geographical scenario. This calculation is done in six steps, which include the conversion of NetCDF to raster, the exportation of raster to the destination folder, the calculation of annual rainfall of a certain year, the calculation of cell statistics to sum all band values and interpolation of data.
Curve Number (CN)
The curve number (CN) for rainwater harvesting has three major steps involved. Firstly, the land use/land cover data (LULC) needs to be prepared, which involves transforming categorical data into numerical scores. Secondly, the soil data with LULC data needs to be merged, highlighting the necessity of transforming soil nomenclature into a usable format and assigning scores based on research papers. Lastly, the classification of reclassified raster data into polygons can be simplified and optimized.
Merging soil and LULC data
Further, merging soil and land use/land cover data needs to automatically generate tables that assign scores based on specific combinations of soil types and land use categories. Merging soil and LULC data undergoes the process of reclassification and weight assignment, highlighting the simplicity of linear equations in ArcGIS. This proposes the integration of pairwise comparison methods for assigning weights. Additionally, online tools for pairwise comparison and analytical hierarchy process (AHP) are available online, which can streamline the weight assignment process. Finally, after the weights for each layer have been assigned and all raster layers have been reclassified, the site suitability analysis can be done. This analysis suggests the optimum sites where rainwater can be harvested (Fig.2).
3. Future steps
There are 55 individual tools in this model slated for separate development, to consolidate these into one tool capable of integrating all five steps. This consolidation represents the primary objective to facilitate the model's transition to open-source status, enabling users to access the comprehensive solution through a single menu interface. The following processes need a single-click tool to simplify the process for users without specialized knowledge.
Drainage density: This 10-step process needs to be streamlined into a single tool for ease of use, particularly in open-source software like QGIS.
Annual rainfall: A separate open-source tool needs to be developed for the conversion process of annual rainfall data into a geographical raster, outlining steps such as raster calculation expressions to combine multiple years of data into a single value.
Curve number: Automation of the transformation process of LULC data into numerical score is needed.
Merge of soil data and LULC data: A dedicated tool for CN grid calculation in open-source software like QGIS is needed.