Water quantity

Water quantity is the timing and total yield of water from a watershed, and is measured by total yield and peak flow over a specified period of time (Neary 2002).

Sources

Neary DG. 2002. Hydrologic values. In: Richardson J, Bjorheden R, Hakkila P, Lowe AT, Smith CT, eds. Bioenergy from Sustainable Forestry: Guiding Principles and Practice. Dordrecht, The Netherlands: Kluwer Academic Publishers: 190-215.

Related Content

Article

Interview with Terefe Hanchiso Sodango, Assistant Professor at Wolkite University

Water scarcity and quality decline is a rapidly increasing challenges and becoming a top concern globally. To wisely manage water and achieve sustainable development, rapid and precise monitoring of water resources is crucial. Earth observation (EO) technologies play a key role in monitoring surface and underground water resources by providing rapid, continuous, high-quality, and low-cost EO data, products, and services. Currently, there are promising efforts in the use of EO technologies for water resource management but there are still huge gaps in the Africa region. The reason for the low utilization of EO technologies can be due to a lack of resources and funding including skilled and motivated human resources in the field and the lack of political commitment to foster EO products, data, and services. Therefore, the use of space technologies and their products to solve water-related problems needs collaborative efforts of all concerned stakeholders from global to local levels.

From Jakarta to Nusantara: Land subsidence and other pressing water challenges in a sinking mega city

Jakarta, “the sinking city”, is the current capital city of Indonesia. Located on the Java Sea, this coastal city is home to nearly 30 million people within the greater-Jakarta area. Jakarta has grappled with water management issues for decades, leading to several current day water-related crises. Access to a reliable, potable water supply is extremely limited as there is a significant disparity between those with piped water access and those without. Citizens without piped water access have consequently relied heavily on groundwater and have dug thousands of unregulated wells as a result. This has led to a second water crisis – the chronic overextraction of Jakarta’s underground aquifers. Land subsidence is of the utmost concern as this sinking city is placed at high flood risk from the surrounding ocean. Approximately 40% of Jakarta now lies below sea level as a result and predictive models suggest that the entire city will be underwater by 2050 (Gilmartin, 2019). Compounding these problems, the climate crisis has led to significant sea level rise as glaciers and ice caps continue to melt (Intergovernmental Panel on Climate Change, 2019; Lindsey, 2022). As the city of Jakarta continues to sink and sea levels rise, millions of citizens within Jakarta are at extremely high risk of flooding, particularly during monsoon season. Thousands of residents have already been forced to abandon their homes in search of improved conditions and higher ground (Garschagen et al., 2018).

Interview with Terefe Hanchiso Sodango, Assistant Professor at Wolkite University

Water scarcity and quality decline is a rapidly increasing challenges and becoming a top concern globally. To wisely manage water and achieve sustainable development, rapid and precise monitoring of water resources is crucial. Earth observation (EO) technologies play a key role in monitoring surface and underground water resources by providing rapid, continuous, high-quality, and low-cost EO data, products, and services. Currently, there are promising efforts in the use of EO technologies for water resource management but there are still huge gaps in the Africa region. The reason for the low utilization of EO technologies can be due to a lack of resources and funding including skilled and motivated human resources in the field and the lack of political commitment to foster EO products, data, and services. Therefore, the use of space technologies and their products to solve water-related problems needs collaborative efforts of all concerned stakeholders from global to local levels.

Capacity Building and Training Material

Water-ForCE Webinar: Water and Agriculture

Water-ForCE Webinar: Water and Agriculture

During this webinar, we will be discussing water quality (run-off from agriculture, pollution of surface water for irrigation) and quantity of water (drought, extreme rainfall, groundwater level, soil moisture) to tackle the water and agriculture domains for the Copernicus Roadmap.

Speakers:

Stakeholder

Water, Energy and Sustainability Research Center, Catholic University of Bolivia

The Center for Research on Water, Energy and Sustainability (CINAES for its name in Spanish) is a part of the Department of Engineering (Environmental Engineering) at the Universidad Catolica Boliviana (UCB), Bolivia. Since 2017, our focus is on scientific research, engineering in practice, engineering and science education, community outreach, public awareness and engagement.