Drought

"A period of abnormally dry weather sufficiently prolonged from the lack of precipitation to cause a serious hydrologic imbalance." (National Oceanic and Atmospheric Administration, 2019)

Sources

National Oceanic and Atmospheric Administration (NOAA). Glossary of Hyfrologic Terms. Accessed February 28, 2019. Available at: https://www.nws.noaa.gov/om/hod/SHManual/SHMan014_glossary.htm 

Related Content

Article

Interview with Sawaid Abbas, Assistant Professor at the Centre for Geographical Information, University of the Punjab, Lahore, Pakistan

Sawaid Abbas, Assistant Professor at the Centre for Geographical Information System, University of the Punjab, Lahore, Pakistan discussed his extensive work in addressing water-related challenges through the nexus between smart sensing and space technologies. His thematic focus spans water scarcity, food security, climate risks, and environmental monitoring with an emphasis on the Asia-Pacific region, including Pakistan and China. Key Sustainable Development Goals (SDGs) guiding his work include SDG2 (Zero Hunger), SDG13 (Climate Action), SDG15 (Life on Land), and SDG11 (Sustainable Cities and Communities).  Abbas's passion for water emerged during his early career at the World Wide Fund for Nature (WWF), where he was involved in Pakistan’s Wetland Program and witnessed the impact of water on associated ecosystems. This sparked his interest in understanding and managing water, forestry, and wildlife resources. He recently studied coastal ecosystems and their responses to climate and anthropogenic stressors in the Asia-Pacific region. The Living Indus – Investing in Ecological Restoration has become a new focus of interest for him, addressing sustainability challenges related to food security, river basin management, and efficient water use in alignment with the UN Decade of Ocean objectives.  Abbas shared his fascination with water, recognizing its complex and essential nature. He is captivated by its beauty in all forms and acknowledges its fundamental importance for life on Earth. This water connection further motivates his commitment to addressing global water challenges and promoting sustainable water use through innovative solutions.  Sawaid Abbas's work, stimulated by both professional commitment and personal fascination, stresses the critical role of space technologies, particularly earth observation, smart sensing nexus, and artificial intelligence in addressing water-related challenges. His research contributes to the development of innovative solutions for sustainable water use, environmental protection, and disaster response, aligning with global goals for a more resilient and water-secure future. 

Urban Water Scarcity: How data from NASA’s GRACE-FO Mission can be used for (near) real time water management

As population becomes larger the demand for water soars, including water needed for domestic, industrial and municipal uses (Mogelgaard 2011). One example of that, is India, where on 20 June 2019 the city of Chennai almost run out of water. Satellite images show the extent of the water shortage in the city (figure 1). While people are queuing up to get water from water trucks that transfer water to the city, the greatest struggle is taking place in the city’s municipal buildings and businesses. Hospitals are facing the threat of not having enough water to treat patients and to clean equipment, and businesses are forced to shut down and wait until the crisis is over.

Geospatial analysis of climate change induced drought using NDVI and LST

Ethiopia, like many developing countries, faces significant threat from droughts triggered by climate change. The country's heavy reliance on agriculture for production, export revenues, and employment makes it highly susceptible to climate change-induced challenges, such as frequent floods, droughts and rising temperatures. Therefore, this research aims to assess drought-prone areas in Meyo district, Borena Zone, thereby contributing to the attainment of SDG 13.1 and the creation of a more resilient and sustainable future in the face of climate change. To achieve the objective, the study employs the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) as indicators and the drought risk map was developed using weighted overlay analysis. Landsat images and rainfall datasets from December in the years 2002, 2012, and 2022 were analyzed to track changes. The result reveals a clear inverse relationship between NDVI and LST, where higher temperatures coincide with decreased NDVI values, signifying vegetation stress caused by reduced water availability. The study also highlights the deficient rainfall and high drought vulnerability in the norther and eastern parts of the study area. The provided drought risk map classifies areas into Low, Moderate, and High risk, illustrating the evolving drought scenario and it signifies increasing severity of drought risk in recent years, particularly from 2012 to 2022. The finding holds vital information for decision-makers, policymakers, and stakeholders in devising effective strategies to mitigate the adverse effect of drought and build resilience in the of climate change.

Space technologies for drought monitoring and management

The impacts of climate change are ever more apparent. The frequency and scale of devastation and destruction of weather hazards are on an increasing trend. According to the latest Intergovernmental Panel on Climate Change Report (IPCC, 2021) climate change is intensifying the water cycle. This will cause more intense droughts in many regions. Moreover, water-related extremes impact the quality of life disproportionately strong. Drought accounts for 25% of all losses from weather-related disasters in the United States of America (Hayes et al., 2012).

United Nations/Ghana/PSIPW - 5th International conference on the use of space technology for water resources management

From 10 to 13 May 2022, the United Nations Officer for Outer Space Affairs organized the 5th International conference on the use of space technology for water resources management. The conference was hosted in a hybrid format in Accra, Ghana, by the University of Energy and Natural Resources, Sunyani on behalf of the Government of Ghana. The event was attended by several senior government representatives of the host country including Dr. Mahamudu Bawumia, Vice President of the Republic of Ghana, the Honorary Minister of Education Dr.

Remote Stock Water Monitoring and Worsening Drought-Induced Water Scarcity in U.S. Southwest

The exacerbation of climate change-induced droughts, among other weather extremes, is escalating into a critical global challenge particularly in arid regions like the Southwestern U.S. where droughts pose grievous environmental and socio-economic threats. Increasingly frequent, intense, and enduring droughts are commonplace generally in Western U.S. inflicting damages on crops and aggravating record-breaking wildfires year after year. Drought is the second-most expensive natural disaster in the U.S. behind hurricanes, costing an average of $9.6 billion in damages per event. Therefore, continuous innovation and deployment of cost-effective and time-efficient water resources monitoring tools could help mitigate severe environmental and socio-economic impacts of droughts which currently impact livestock and wildlife management in Southwest U.S. A recent innovation as a potential climate change adaptation solution is the Surface Water Identification and Forecasting Tool (SWIFT). The Google Earth Engine-based tool is a remote sensing-based technology that leverages optical imagery derived from Landsat 8 OLI and Sentinel-2 Multispectral Instrument (MSI), and radar imagery from Sentinel-1 C-Band Synthetic Aperture Radar (C-SAR) to monitor near real-time the availability of water in stock ponds and tanks. As drought conditions are expected to worsen with rising global temperatures, SWIFT is designed to provide a valuable and affordable stock water monitoring solution for cattle producers and land managers, etc.

Escasez urbana de agua: cómo pueden utilizarse los datos de la misión GRACE-FO de la NASA para la gestión del agua (casi) en tiempo real

As population becomes larger the demand for water soars, including water needed for domestic, industrial and municipal uses (Mogelgaard 2011). One example of that, is India, where on 20 June 2019 the city of Chennai almost run out of water. Satellite images show the extent of the water shortage in the city (figure 1). While people are queuing up to get water from water trucks that transfer water to the city, the greatest struggle is taking place in the city’s municipal buildings and businesses. Hospitals are facing the threat of not having enough water to treat patients and to clean equipment, and businesses are forced to shut down and wait until the crisis is over.

Pénuries d'Eau en Milieu Urbain : Comment les Données de la Mission GRACE-FO de la NASA Peuvent-Elles Soutenir la Gestion de l'Eau en Temps Quasi-Réel ?

Plus la population augmente, plus la demande en eau augmente, notamment l'eau nécessaire aux usages domestiques, industriels et municipaux (Mogelgaard 2011). L'Inde en est un bon exemple : le 20 juin 2019, la ville de Chennai a failli manquer d'eau. Des images satellites ont montré l'ampleur de la pénurie d'eau dans la ville (schéma 1). Alors que les habitants faisaient la queue pour de l'eau stockée dans des camions-citernes qui la rendaient disponible dans la ville, le véritable défi de gestion concernait les bâtiments municipaux et les entreprises de la ville. La pénurie d´eau a gravement affecté la capacité des hôpitaux à soigner les patients et à nettoyer les équipements, et a contraint les entreprises à fermer leurs portes jusqu'à la fin de la crise.

Interview with Joshua Ubah, Geospatial Environmental Engineer

Joshua is a Master’s student in Tropical Hydrogeology and Environmental Engineering at Technische Universität of Darmstadt. His interest is focused on hydrogeological processes, groundwater modelling, application of remote sensing and GIS in environmental studies, water management and climate change. He also works as a graduate Intern at AgriWatch BV, a company that applies geospatial solutions for precision Agriculture. As a graduate intern, he applies his interdisciplinary knowledge in developing smart-farming solutions using space-based technologies to farmers in the Twente region of the Netherlands. He deploys satellite imagery, field studies and machine learning algorithms to predict the effect of climate change on arable crops. He also utilizes precipitation data to predict rainfall events to aid farmers in determining planting and harvesting periods. Joshua earned a bachelor’s degree in Geological Sciences, his bachelor’s thesis research aimed at carrying out paleoenvironmental reconstruction using paleocurrent indicators of water flow and direction, and application of ArcGIS to produce maps. Currently, he is working on his master’s thesis with emphasis on the impact of the ancient climate on the paleoenvironment particularly on vegetation, where he tries to research plants response to long-term greenhouse periods and short-term warming events on various timescales throughout Earth's history. His research interests revolve around the application of space technologies in providing solutions and tackling climate change.

Interview with Sawaid Abbas, Assistant Professor at the Centre for Geographical Information, University of the Punjab, Lahore, Pakistan

Sawaid Abbas, Assistant Professor at the Centre for Geographical Information System, University of the Punjab, Lahore, Pakistan discussed his extensive work in addressing water-related challenges through the nexus between smart sensing and space technologies. His thematic focus spans water scarcity, food security, climate risks, and environmental monitoring with an emphasis on the Asia-Pacific region, including Pakistan and China. Key Sustainable Development Goals (SDGs) guiding his work include SDG2 (Zero Hunger), SDG13 (Climate Action), SDG15 (Life on Land), and SDG11 (Sustainable Cities and Communities).  Abbas's passion for water emerged during his early career at the World Wide Fund for Nature (WWF), where he was involved in Pakistan’s Wetland Program and witnessed the impact of water on associated ecosystems. This sparked his interest in understanding and managing water, forestry, and wildlife resources. He recently studied coastal ecosystems and their responses to climate and anthropogenic stressors in the Asia-Pacific region. The Living Indus – Investing in Ecological Restoration has become a new focus of interest for him, addressing sustainability challenges related to food security, river basin management, and efficient water use in alignment with the UN Decade of Ocean objectives.  Abbas shared his fascination with water, recognizing its complex and essential nature. He is captivated by its beauty in all forms and acknowledges its fundamental importance for life on Earth. This water connection further motivates his commitment to addressing global water challenges and promoting sustainable water use through innovative solutions.  Sawaid Abbas's work, stimulated by both professional commitment and personal fascination, stresses the critical role of space technologies, particularly earth observation, smart sensing nexus, and artificial intelligence in addressing water-related challenges. His research contributes to the development of innovative solutions for sustainable water use, environmental protection, and disaster response, aligning with global goals for a more resilient and water-secure future. 

Interview with Ruvimbo Samanga

Ruvimbo Samanga, despite her age, has vast experience in the law, space, and water sectors. She is presently involved in a regional study on the integration of GIS and statistical information in Zimbabwe, working towards the promulgation of GIS standards and legislation to support a National Spatial Data Infrastructure (NSDI). Ruvimbo is excited by the merging of sustainable development for water management with space technologies because it is scalable, environmentally friendly, and cost-effective over the long run. Ruvimbo feels strongly that space technologies have a role to play in policy and legal affairs, and also sees potential especially in the use of emerging technologies such as block chain, artificial intelligence (AI) and quantum computing.

Interview with Lilian Nguracha Balanga, Founder of Women.conserve

Short description of the Samburu community

The Samburu community is the Nilotic ethnic community of North Central Kenya. They dress in red shukas and adorn themselves with necklaces, bracelets and anklets mostly from beads. They believe in God Nkai, living in the mountains. They are nomadic are pastoralists, meaning that they keep animals (e.g., cows, goats, sheep and camel) which is their main source of livelihood as they get milk, meat and blood for self consumption and/or to be sold. They move from place to place in search of pasture and water.

Interview with Sarhan Zerouali

Sarhan Zerouali became fascinated with water at a young age through learning about water scarcity around the world and about traditional methods for locating groundwater. In a space applications course Sahran then learnt about space-based technologies. He is currently working on a research project on how remote sensing and other technologies can help alleviate global challenges arising from land degradation. As an aerospace engineer, Sahran has worked with various modern technologies in his work including nanosatellites, artificial intelligence, and feature extraction algorithms.

Interview with Nokubonga Mazibuko, Commissioner at the Commission on Khoi-San Matters, South Africa

Disclaimer!

I should note that this interview does not aim to compare the San women of Platfontein with the Zulu women from Folweni as these are totally different communities. Also, as much as I am a Commissioner, this interview is not done on behalf of the Commission on Khoi-San Matters (CKSM) but on my personal capacity as a researcher and academic who has an interest on issues pertaining to women.

Interview with Sarhan Zerouali

Sarhan Zerouali became fascinated with water at a young age through learning about water scarcity around the world and about traditional methods for locating groundwater. In a space applications course Sahran then learnt about space-based technologies. He is currently working on a research project on how remote sensing and other technologies can help alleviate global challenges arising from land degradation. As an aerospace engineer, Sahran has worked with various modern technologies in his work including nanosatellites, artificial intelligence, and feature extraction algorithms.

Interview with Joshua Ubah, Geospatial Environmental Engineer

Joshua is a Master’s student in Tropical Hydrogeology and Environmental Engineering at Technische Universität of Darmstadt. His interest is focused on hydrogeological processes, groundwater modelling, application of remote sensing and GIS in environmental studies, water management and climate change. He also works as a graduate Intern at AgriWatch BV, a company that applies geospatial solutions for precision Agriculture. As a graduate intern, he applies his interdisciplinary knowledge in developing smart-farming solutions using space-based technologies to farmers in the Twente region of the Netherlands. He deploys satellite imagery, field studies and machine learning algorithms to predict the effect of climate change on arable crops. He also utilizes precipitation data to predict rainfall events to aid farmers in determining planting and harvesting periods. Joshua earned a bachelor’s degree in Geological Sciences, his bachelor’s thesis research aimed at carrying out paleoenvironmental reconstruction using paleocurrent indicators of water flow and direction, and application of ArcGIS to produce maps. Currently, he is working on his master’s thesis with emphasis on the impact of the ancient climate on the paleoenvironment particularly on vegetation, where he tries to research plants response to long-term greenhouse periods and short-term warming events on various timescales throughout Earth's history. His research interests revolve around the application of space technologies in providing solutions and tackling climate change.

Interview with Ruvimbo Samanga

Ruvimbo Samanga, despite her age, has vast experience in the law, space, and water sectors. She is presently involved in a regional study on the integration of GIS and statistical information in Zimbabwe, working towards the promulgation of GIS standards and legislation to support a National Spatial Data Infrastructure (NSDI). Ruvimbo is excited by the merging of sustainable development for water management with space technologies because it is scalable, environmentally friendly, and cost-effective over the long run. Ruvimbo feels strongly that space technologies have a role to play in policy and legal affairs, and also sees potential especially in the use of emerging technologies such as block chain, artificial intelligence (AI) and quantum computing.

Interview with Nokubonga Mazibuko, Commissioner at the Commission on Khoi-San Matters, South Africa

Disclaimer!

I should note that this interview does not aim to compare the San women of Platfontein with the Zulu women from Folweni as these are totally different communities. Also, as much as I am a Commissioner, this interview is not done on behalf of the Commission on Khoi-San Matters (CKSM) but on my personal capacity as a researcher and academic who has an interest on issues pertaining to women.

Interview with Lilian Nguracha Balanga, Founder of Women.conserve

Short description of the Samburu community

The Samburu community is the Nilotic ethnic community of North Central Kenya. They dress in red shukas and adorn themselves with necklaces, bracelets and anklets mostly from beads. They believe in God Nkai, living in the mountains. They are nomadic are pastoralists, meaning that they keep animals (e.g., cows, goats, sheep and camel) which is their main source of livelihood as they get milk, meat and blood for self consumption and/or to be sold. They move from place to place in search of pasture and water.

Capacity Building and Training Material

ARSET - Remote Sensing of Drought

Overview:

Prolonged drought can result in economic, environmental, and health-related impacts. In these training webinars, participants will learn how to monitor drought conditions and assess impacts on the ecosystem using precipitation, soil moisture, and vegetation data. The training will provide an overview of drought classification, as well as an introduction to web-based tools for drought monitoring and visualization.

Objective:

By the end of the training, participants will be able to:

Water-ForCE Webinar: Water and Agriculture

Water-ForCE Webinar: Water and Agriculture

During this webinar, we will be discussing water quality (run-off from agriculture, pollution of surface water for irrigation) and quantity of water (drought, extreme rainfall, groundwater level, soil moisture) to tackle the water and agriculture domains for the Copernicus Roadmap.

Speakers:

Event

Local Perspectives Case Studies

Women and their everyday lives related to Water: Joy Marie Lawrence from Cape Town

Dry soil
The City of Cape Town is a coastal city that was facing severe water shortages. In Cape Town,  water is sourced from the surrounding dams which collect the rain fall water from the mountains. Water is pumped via a distribution network to households and businesses. In 2018 and 2019 water supply was severely disrupted due to limited rain fall during the winter rainfall season. The dams were running dry and there was a concerted effort from the local government and national government about the water shortages in Cape Town and some parts of the country. As a consequence, water distribution was severely reduced to prevent the dams from running dry - which at a particular point the dams were as low as 10 per cent of capacity. Water users (residents, businesses, and industries) were urged to use water efficiently and avoid overconsumption; if not, there were penalties introduced for overuse. The citizens were subjected to water cuts and had to resort to bottled water or collect water from the tankers for drinking. Greywater use was encouraged for irrigating food and non-food gardens, flushing toilets, cleaning vehicles etc. Water use for recreational purposes was banned and alternative supplies of water were transported via tankers to Cape Town. The City also tried a temporary de-salination plant at huge costs as a means of getting drinkable water to citizens. After a good raining winter season in 2020, the dams are moderately full again but the risk of another drought is ever present. There are surrounding aquifers however the quality of the water has not been fully assessed, more technical data will assist in this regard.

Geospatial Analysis of Climate Change induced Drought using NDVI and LST

picture
Ethiopia, like many developing countries, faces significant threat from droughts triggered by climate change. The country's heavy reliance on agriculture for production, export revenues, and employment makes it highly susceptible to climate change-induced challenges, such as frequent floods, droughts and rising temperatures. Therefore, this research aims to assess drought-prone areas in Meyo district, Borena Zone, thereby contributing to the attainment of SDG 13.1 and the creation of a more resilient and sustainable future in the face of climate change. To achieve the objective, the study employs the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) as indicators and the drought risk map was developed using weighted overlay analysis. Landsat images and rainfall datasets from December in the years 2002, 2012, and 2022 were analyzed to track changes. The result reveals a clear inverse relationship between NDVI and LST, where higher temperatures coincide with decreased NDVI values, signifying vegetation stress caused by reduced water availability. The study also highlights the deficient rainfall and high drought vulnerability in the norther and eastern parts of the study area. The provided drought risk map classifies areas into Low, Moderate, and High risk, illustrating the evolving drought scenario and it signifies increasing severity of drought risk in recent years, particularly from 2012 to 2022. The finding holds vital information for decision-makers, policymakers, and stakeholders in devising effective strategies to mitigate the adverse effect of drought and build resilience in the of climate change.

Project / Mission / Initiative / Community Portal

Alpine Drought Observatory

Droughts are becoming an increasing concern in the Alps and in the lowland areas that receive Alpine water. The Alpine Drought Observatory (ADO) provides a tool for a quick and easy overview of the current drought situation in the Alpine region and past drought situations in the last 6 months as maps and the last 40 years as timeseries.

Stakeholder

GEO - Global Water Sustainability

Established in 2017 by the Group on Earth Observations - Water Community, GEOGloWS is a voluntary mechanism created by informal agreement among multiple partners from inside and outside the UN system. This mechanism allows for engagement and greater integration with trans-national organizations and agencies with water responsibilities at the National and Local levels.  

RSS-Hydro

Diverse and dynamic R&D company operating across geospatial fields for a more sustainable future - Earth Observation, remote sensing, drones, and modelling of water risks. We are determined to make the world a more sustainable and resilient place, including the SDG targets 1, 2, 6, 13, 15, and 17 in our mission and daily activities. We offer:

Person

Software/Tool/(Web-)App

JAXA Climate Rainfall Watch

A need to monitor precipitation extremes from space is widely recognized, especially for regions where ground-based observations are limited or unavailable. The Japan Aerospace Exploration Agency (JAXA) has developed the Global Satellite Mapping of Precipitation (GSMaP) in the Global Precipitation Measurement (GPM) mission. The JAXA participated in the Space-based Weather and Climate Extremes Monitoring (SWCEM) of the World Meteorological Organization (WMO) by providing the GSMaP Near-real-time Rainfall Product.