6.6 By 2020, protect and restore water-related ecosystems, including mountains, forests, wetlands, rivers, aquifers and lakes

Graphic displaying the protection and restoration of water-related ecosystems

Related Content

Article

Interview with Dr Khalid Mahmood, Assistant Professor at the University of the Punjab

Could you describe your professional career and/or personal experiences related to space technology and water? Where does your interest in those sectors come from?

I started my research career in 2013, with research interests revolving around various environmental concerns that were deeply rooted in water related issues of Pakistan. Having an educational background in Space Science, it was quite intuitive to possess understanding of the very high potential of applicability of Geospatial technologies in the water sector.

Interview with Mr Stuart Crane, Programme Management Officer at UN Environment

Mr Stuart Crane, has been program coordinator at the United Nations Environment Program and its Center for Water and Environment since 2017. Mr Crane has experience in international intergovernmental organizations since 2009 and dedicated large parts of his career to working on environmental issues such as energy, climate change and water. His professional background is in Environmental Quality and resource management, and he received his post graduate degree in International Development. On behalf of UNEP, he coordinates a global SDG 6 fresh water program that supports 193 countries with progressing towards SDG. 6 targets on improving the water governance, ecosystem management and reducing freshwater pollution.

Unlocking the secrets of river health: Using remote sensing to assess environmental flow (eflow)

The term environmental flow (eflow) has recently become increasingly popular as concerns about the destruction of freshwater ecosystems and the impacts of development activities (i.e., urban development and energy production) on river have intensified. Eflow is defined as "the quantity, timing, and quality of water flows required to sustain freshwater and estuarine ecosystems,  and the human livelihoods and well-being that depend on these ecosystems" (Brisbane Declaration 2007). Alternatively, eflow is described as the foundation of water security for achieving sustainable development. Managing eflow is relevant to meet the most targets of SDG 6, but especially SDG 6.4 on water use efficiency (6.4.2 level of water stress) and SDG target 6.6 on the protection of water-dependent ecosystems. 

Monitoring River Delta Using Remote Sensing

Since ancient times, people have established communities in river deltas because it provides water, fertile land, and transportation access, making them an ideal place to live. This pattern has been carried forward to the present. With nearly 6 billion people living in river deltas, they are one of the most densely populated places on Earth (Kuenzer and Renaud, 2011). However, they are facing threats such as climate change, sea level rise, land use changes, and ecosystem degradation.

Global Precipitation Mission: Improved, accurate and timely global precipitation information

Continuous and reliable global precipitation information is crucial for myriad of weather, climate and hydrological applications. The importance of precipitation in the form of rain, hail, sleet, snow etc. is known to science and clear to a layman. However, it’s quite tricky to measure past precipitation trends or predicting accurate future forecasts. There are three main categories of precipitation data sets available: ground based, satellite-based and blended products of ground and space data (Climate Data Guide, 2014).

Tirer Parti des Technologies Spatiales pour Surveiller la Pollution Plastique dans les Océans

Plusieurs projets en cours tentent  de détecter la pollution plastique dans les océans en utilisant la technologie spatiale.

L’océan est où la vie a commencé. Il abrite la majorité des plantes et des animaux de la Terre. Cependant, il y a actuellement un autre habitant qui met en danger toutes les espèces vivantes sous et au-dessus de l’eau, les humains inclus. Cet habitant est appelé « plastique ». Le plus grand marché du plastique est celui des emballages destinés à l’élimination immédiate (Sigogneau-Russell, 2003).

The advantages of applying space-based technology in monitoring and controlling water hyacinth in aquatic ecosystems

Water hyacinth is a well-known plant that has invaded many aquatic ecosystems around the globe. The fast growing nature of the weed makes it challenging to contain. The weeds’ presence in aquatic bodies results in decreased oxygen and nutrient levels, which threatens aquatic life as well as the productivity and functionality of the whole aquatic ecosystem. This not only causes ecological disturbances but evidently socio-economic challenges arise as well as the weed can be detrimental to health as well as economic activities in many riparian communities worldwide. The use of space-based technology together with modern technologies is of great significance in capturing the weed and identifying its spatial and temporal distribution even in hard to reach places. This helps scientists better understand the weed and how infestation occurs which enables better management and control of the weed.

Leveraging space technologies to monitor plastic pollution in oceans

 

Several ongoing projects are trying to detect plastic pollution in oceans by using Space technology

The ocean is where life began. It is home to the majority of the Earth’s plants and animals. However, there is currently another habitant endangering all species living under and above water. Humans included. The habitant is called “Plastic”. Plastic’s largest market is packaging designed for immediate disposal (Sigogneau-Russell, 2003).

Les Avantages de l'Application des Technologies Spatiales dans la Surveillance et le Contrôle de la Jacinthe d'Eau dans les écosystèmes aquatiques

Merci à Mussa Kachunga Stanis d'avoir traduit cet article volontairement.

La résilience d'un socio-écosystème est généralement testée par sa capacité à persister et à maintenir sa fonctionnalité tout en subissant des changements dus à des perturbations. Mais que se passe-t-il lorsque les perturbations sont trop rapides, trop préjudiciables et trop fortes pour qu'un socio-écosystème puisse maintenir sa fonctionnalité ?

Interview with Mr Stuart Crane, Programme Management Officer at UN Environment

Mr Stuart Crane, has been program coordinator at the United Nations Environment Program and its Center for Water and Environment since 2017. Mr Crane has experience in international intergovernmental organizations since 2009 and dedicated large parts of his career to working on environmental issues such as energy, climate change and water. His professional background is in Environmental Quality and resource management, and he received his post graduate degree in International Development. On behalf of UNEP, he coordinates a global SDG 6 fresh water program that supports 193 countries with progressing towards SDG. 6 targets on improving the water governance, ecosystem management and reducing freshwater pollution.

Interview with Dr Khalid Mahmood, Assistant Professor at the University of the Punjab

Could you describe your professional career and/or personal experiences related to space technology and water? Where does your interest in those sectors come from?

I started my research career in 2013, with research interests revolving around various environmental concerns that were deeply rooted in water related issues of Pakistan. Having an educational background in Space Science, it was quite intuitive to possess understanding of the very high potential of applicability of Geospatial technologies in the water sector.

Interview with Amin Shakya, PhD Candidate at the University of Twente

We present an interview with Amin Shakya, a PhD candidate at the ITC Faculty of Geo-information science and earth observation at the University of Twente. We delve into Amin’s first engagements with geospatial technologies, his current PhD research on river discharge estimation using earth observation, as well as his prior work on groundwater analysis using space technologies. Further, Amin is engaged with the youth community particularly with the Groundwater Youth Network. We discuss his take on the role of youth in climate change adaptation. Throughout this interview, we touch upon various water challenges across the globe, from disaster risk management in Nepal, to urban water challenges in Mexico, to his current PhD research focused in Europe and in Africa.

Interview with Benjamin Wullobayi Dekongmen

Could you describe how your professional and/or personal experience relate to water? Where does your interest in water resources management come from? What influenced your decision to focus your work on the use of space technology for water management? 

My upbringing on a farm set out the foundation for my interest in water resources, as I used to collect water for domestic and agricultural purposes from the streams.

Interview with Amin Shakya, PhD Candidate at the University of Twente

We present an interview with Amin Shakya, a PhD candidate at the ITC Faculty of Geo-information science and earth observation at the University of Twente. We delve into Amin’s first engagements with geospatial technologies, his current PhD research on river discharge estimation using earth observation, as well as his prior work on groundwater analysis using space technologies. Further, Amin is engaged with the youth community particularly with the Groundwater Youth Network. We discuss his take on the role of youth in climate change adaptation. Throughout this interview, we touch upon various water challenges across the globe, from disaster risk management in Nepal, to urban water challenges in Mexico, to his current PhD research focused in Europe and in Africa.

Interview with Benjamin Wullobayi Dekongmen

Could you describe how your professional and/or personal experience relate to water? Where does your interest in water resources management come from? What influenced your decision to focus your work on the use of space technology for water management? 

My upbringing on a farm set out the foundation for my interest in water resources, as I used to collect water for domestic and agricultural purposes from the streams.

Capacity Building and Training Material

Remote Sensing for Freshwater Habitats

Freshwater habitats play an important role in ecological function and biodiversity. Remote sensing of these ecosystems is primarily tied to observations of the drivers of biodiversity and ecosystem health. Remote sensing can be used to understand things like land use and land cover change in a watershed, habitat connectivity along a water body, water body location and extent, and water quality parameters. This webinar series will guide participants through using NASA Earth observations for habitat monitoring, specifically for freshwater fish and other species.

Event

Project / Mission / Initiative / Community Portal

Socio-groundwater toolbox

To date, hydrological issues are playing a key role in the implementation of the goals in which water has a crosscutting role linked to many other Sustainable Development Goals (SDG’s) set in the 2030 Agenda. According to SDG 6, there is a need to monitor eight different interrelated targets globally. At present, several global tools and initiatives for water monitoring exist. A prerequisite for their implementation is to have a thorough knowledge of the system and a consistent database, usually collected at a country and global scale worldwide.

Software/Tool/(Web-)App